Limit of Absolute Values and Metric Spaces

Click For Summary
SUMMARY

The discussion centers on the limits of absolute values within metric spaces, specifically examining the conditions under which the limit of distances converges to a specific value, ε. It is established that if $\lim_{{k}\to{\infty}}d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ and $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right)=\varepsilon$, then it can be inferred that $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ using the triangle inequality. The metric $d$ is confirmed to correspond to a metric on the metric space $(X,d)$.

PREREQUISITES
  • Understanding of metric spaces and their properties
  • Familiarity with limits in mathematical analysis
  • Knowledge of the triangle inequality in metric spaces
  • Basic concepts of convergence in sequences
NEXT STEPS
  • Study the properties of metric spaces and various types of metrics
  • Explore the implications of the triangle inequality in different contexts
  • Investigate convergence criteria in sequences and series
  • Learn about the completeness of metric spaces and its significance
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in the theoretical foundations of metric spaces and convergence in mathematics.

ozkan12
Messages
145
Reaction score
0
Let $\lim_{{k}\to{\infty}}d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ and $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right)=\varepsilon$...Can we say that $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ by using$\left| d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)-d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right) \right|\le d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)$...Thank you for your attention...Best wishes :)
 
Physics news on Phys.org
ozkan12 said:
Let $\lim_{{k}\to{\infty}}d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ and $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right)=\varepsilon$...Can we say that $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ by using$\left| d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)-d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right) \right|\le d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)$...Thank you for your attention...Best wishes :)

Is $d$ corresponds to a metric on a metric space ?
 
Yes, $d$ correspond to metric on $(X,d)$ metric space.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K