MHB Limit of Absolute Values and Metric Spaces

Click For Summary
The discussion centers on the limits of distances in a metric space, specifically examining whether the limit of the distance between two sequences converges to a specific value. It establishes that if the limits of two distances are both equal to ε, it raises the question of whether the distance between a third point and one of the previous points also converges to ε. The participants confirm that the distance function d corresponds to a metric on the metric space. The discussion utilizes properties of absolute values and inequalities to explore the relationships between these limits. Ultimately, the inquiry seeks to clarify the implications of these limits within the context of metric spaces.
ozkan12
Messages
145
Reaction score
0
Let $\lim_{{k}\to{\infty}}d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ and $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right)=\varepsilon$...Can we say that $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ by using$\left| d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)-d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right) \right|\le d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)$...Thank you for your attention...Best wishes :)
 
Physics news on Phys.org
ozkan12 said:
Let $\lim_{{k}\to{\infty}}d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ and $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right)=\varepsilon$...Can we say that $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ by using$\left| d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)-d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right) \right|\le d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)$...Thank you for your attention...Best wishes :)

Is $d$ corresponds to a metric on a metric space ?
 
Yes, $d$ correspond to metric on $(X,d)$ metric space.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K