MHB Limit of Absolute Values and Metric Spaces

ozkan12
Messages
145
Reaction score
0
Let $\lim_{{k}\to{\infty}}d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ and $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right)=\varepsilon$...Can we say that $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ by using$\left| d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)-d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right) \right|\le d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)$...Thank you for your attention...Best wishes :)
 
Physics news on Phys.org
ozkan12 said:
Let $\lim_{{k}\to{\infty}}d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ and $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right)=\varepsilon$...Can we say that $\lim_{{k}\to{\infty}}d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)=\varepsilon$ by using$\left| d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)-1}\right)-d\left({x}_{n\left(k\right)},{x}_{m\left(k\right)}\right) \right|\le d\left({x}_{m\left(k\right)},{x}_{m\left(k\right)-1}\right)$...Thank you for your attention...Best wishes :)

Is $d$ corresponds to a metric on a metric space ?
 
Yes, $d$ correspond to metric on $(X,d)$ metric space.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
11
Views
2K
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
4K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K