MHB Limit of another trigonometric function

tmt1
Messages
230
Reaction score
0
$$\lim_{{x}\to{\pi/4}} \frac{1-\tan(x)}{\sin(x)-\cos(x)}$$

So using, L'Hospital's rule, I get:

$$\lim_{{x}\to{\pi/4}} \frac{\sec^2(x)}{\cos(x)+\sin(x)}$$

But $\cos(x)+\sin(x) = 0$ when $x = \dfrac{\pi}{4}$ which is an indeterminate form, so how do I go from here?
 
Last edited by a moderator:
Physics news on Phys.org
tmt said:
$$\lim_{{x}\to{\pi/4}} \frac{1-\tan(x)}{\sin(x)-\cos(x)}$$

So using, L'Hospital's rule, I get:

$$\lim_{{x}\to{\pi/4}} \frac{\sec^2(x)}{\cos(x)+\sin(x)}$$

But $\cos(x)+\sin(x) = 0$ when $x = \dfrac{\pi}{4}$ which is an indeterminate form, so how do I go from here?

Using L'Hôpital's rule, you should get:

$$\lim_{{x}\to{\pi/4}} \frac{-\sec^2(x)}{\cos(x)+\sin(x)}$$

Rethink:

$$\cos\left(\frac{\pi}{4}\right)+\sin\left(\frac{\pi}{4}\right)$$...:D
 
MarkFL said:
Using L'Hôpital's rule, you should get:

$$\lim_{{x}\to{\pi/4}} \frac{-\sec^2(x)}{\cos(x)+\sin(x)}$$

Rethink:

$$\cos\left(\frac{\pi}{4}\right)+\sin\left(\frac{\pi}{4}\right)$$...:D

Thanks,

I get

$-\frac{2}{\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}}$

which is equal to

$-\frac{1}{\frac{\sqrt{2}}{2}}$

.

$-\frac{1}{\frac{\sqrt{2}}{2}}$

$- \frac{2}{\sqrt{2}}$

But the answer is just $-\sqrt{2}$
 
$$-\frac{2}{\sqrt{2}}=-\frac{\sqrt{2}\cdot\cancel{\sqrt{2}}}{\cancel{\sqrt{2}}}=-\sqrt{2}$$

You had the correct answer, it could just be further simplified. :D
 
Back
Top