MHB Limit of function containing integer part

Click For Summary
The limit $$\lim_{x\rightarrow \infty}x^{100}\left [\frac{1}{x}\right ]$$ evaluates to 0 as \(x\) approaches positive infinity since \(\left[\frac{1}{x}\right] = 0\) when \(x\) is large. For negative infinity, when \(x \le -1\), \(\left[\frac{1}{x}\right] = -1\) leading to \(x^{100}\left[\frac{1}{x}\right] = -x^{100}\), which diverges to negative infinity. The integer part of a negative fraction is not zero but the greatest integer less than or equal to that fraction. This distinction clarifies the behavior of the limit for both positive and negative infinity. Understanding the definition of the integer part is crucial for accurate limit calculations.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to calculate the limit $$\lim_{x\rightarrow \infty}x^{100}\left [\frac{1}{x}\right ]$$

When $x\rightarrow +\infty$ it holds that $0<\frac{1}{x}<1$, or not? (Wondering)

If yes, it holds that $\left [\frac{1}{x}\right ]=0$ or not? Then $x^{100}\left [\frac{1}{x}\right ]=0$, and therefore the limit is $0$. But what happens if $x\rightarrow -\infty$ ? (Wondering)
 
Physics news on Phys.org
mathmari said:
When $x\rightarrow +\infty$ it holds that $0<\frac{1}{x}<1$, or not? (Wondering)

If you meant to say $0 < \frac{1}{x} < 1$ when $x$ is sufficiently large, then you are correct.

mathmari said:
If yes, it holds that $\left [\frac{1}{x}\right ]=0$ or not? Then $x^{100}\left [\frac{1}{x}\right ]=0$, and therefore the limit is $0$.

That's correct.

mathmari said:
But what happens if $x\rightarrow -\infty$ ? (Wondering)

When $x \le -1$, $-1 \le 1/x < 0$, which implies $\left[\frac{1}{x}\right] = -1$. Thus $x^{100}\left[\frac{1}{x}\right] = -x^{100}$ whenever $x \le -1$. What does that tell you about the limit as $x \to -\infty$?
 
Euge said:
When $x \le -1$, $-1 \le 1/x < 0$, which implies $\left[\frac{1}{x}\right] = -1$. Thus $x^{100}\left[\frac{1}{x}\right] = -x^{100}$ whenever $x \le -1$. What does that tell you about the limit as $x \to -\infty$?

When $-1 \le 1/x < 0$, we have for example $-0,000111$. Isn't the integer part again $0$ ? (Wondering)
 
No, because the integer $0$ is greater than that number. The integer part of a number $z$ is defined as the greatest integer less than or equal to $z$.
 
Euge said:
No, because the integer $0$ is greater than that number. The integer part of a number $z$ is defined as the greatest integer less than or equal to $z$.

Ah... I though that the integer part of a number of the form "a,bcd..." is "a" so the number before the comma... (Thinking)
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K