Limit of Rational Functions: $p(x)/q(x)$ as $x\to\infty$

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
The limit of the rational function \( \frac{p(x)}{q(x)} \) as \( x \to \infty \) is determined by the degrees of the polynomials \( p(x) \) and \( q(x) \). If the degree of \( p(x) \) (denoted as \( n \)) is greater than that of \( q(x) \) (denoted as \( m \)), the limit approaches infinity. If \( n \) equals \( m \), the limit equals the ratio of the leading coefficients \( \frac{a_n}{b_m} \). Conversely, if \( n \) is less than \( m \), the limit approaches zero. This analysis confirms the behavior of rational functions at infinity based on polynomial degree comparisons.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Thank your to Chris L T521 for submitting this week's high school level problem!

$p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ and $q(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_1x+b_0$. Show that
\[\lim_{x\to\infty}\frac{p(x)}{q(x)}=\begin{cases} \infty & \text{ if $n>m$}\\ \frac{a_n}{b_m} & \text{ if $n=m$}\\ 0 & \text{ if $n<m$}\end{cases}\]

 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) Sudharaka
2) Siron

Honorable mention to veronica1999 for a good intuitive explanation but not quite formal enough to constitute a proof.

Solution (from Sudharaka):

[sp]\[p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0\mbox{ and }q(x)=b_mx^m+b_{m-1}x^{m-1}+\cdots+b_1x+b_0\]

\[\Rightarrow\frac{p(x)}{q(x)}=\frac{x^n}{x^m}\left(\frac{a_n+a_{n-1}x^{-1}+\cdots+a_1x^{-n+1}+a_0x^{-n}}{b_m+b_{m-1}x^{-1}+\cdots+b_1x^{-m+1}+b_0x^{-m}}\right)\]

\(\mbox{Note that, }\displaystyle\lim_{x\rightarrow\infty}\left(\frac{a_n+a_{n-1}x^{-1}+\cdots+a_1x^{-n+1}+a_0x^{-n}}{b_m+b_{m-1}x^{-1}+\cdots+b_1x^{-m+1}+b_0x^{-m}}\right)=\frac{a_n}{b_n}\)

\[\therefore\lim_{x\rightarrow\infty}\frac{p(x)}{q(x)}=\frac{a_n}{b_n}\lim_{x\rightarrow\infty}x^{n-m}\]

\(\mbox{Note that, }\displaystyle\lim_{x\rightarrow\infty}x^{n-m}=\begin{cases} \infty & \text{ if $n>m$}\\ 1 & \text{ if $n=m$}\\ 0 & \text{ if $n<m$}\end{cases}\)

\[\therefore\lim_{x\rightarrow\infty}\frac{p(x)}{q(x)}=\begin{cases} \infty & \text{ if $n>m$}\\ \frac{a_n}{b_m} & \text{ if $n=m$}\\ 0 & \text{ if $n<m$}\end{cases}\]

Q.E.D [/sp]
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
788
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
48
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K