I Limit of the product of these two functions

Click For Summary
The discussion centers on the limit of the product of two functions, where one function, f(x), approaches zero as x approaches infinity, while the other, g(x) = sin(x), does not have a limit. It is asserted that the limit of the product f(x)g(x) also approaches zero under these conditions. An epsilon-delta proof is mentioned, indicating that |f(x)g(x)| is bounded by |f(x)|, which approaches zero. The Squeeze theorem is referenced as a foundational concept that supports this conclusion, although a specific theorem or textbook citation is not provided. Overall, the limit of the product of a function approaching zero and a bounded oscillating function is confirmed to be zero.
LagrangeEuler
Messages
711
Reaction score
22
If we have two functions ##f(x)## such that ##\lim_{x \to \infty}f(x)=0## and ##g(x)=\sin x## for which ##\lim_{x \to \infty}g(x)## does not exist. Can you send me the Theorem and book where it is clearly written that
\lim_{x \to \infty}f(x)g(x)=0
I found that only for sequences, but it should be correct for functions also.
 
Physics news on Phys.org
LagrangeEuler said:
If we have two functions ##f(x)## such that ##\lim_{x \to \infty}f(x)=0## and ##g(x)=\sin x## for which ##\lim_{x \to \infty}g(x)## does not exist. Can you send me the Theorem and book where it is clearly written that
\lim_{x \to \infty}f(x)g(x)=0
I found that only for sequences, but it should be correct for functions also.
If ##g## is any bounded function then there is a straightforward epsilon-delta proof.
 
|f(x)g(x)| is bounded by |f(x)| goes to 0
 
I don't know of a specific place that states this exact problem, but this is an application of the Squeeze theorem which can be found in any calculus textbook.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K