MHB Limits of Complex Functions .... Example from Palka ....

Click For Summary
The discussion centers on understanding complex functions as presented in Bruce P. Palka's book, particularly in Chapter 2 regarding limits. Participants seek clarification on specific equations and inequalities from Section 2.2, focusing on the expression involving the logarithm of complex numbers. Questions arise about the derivation of certain terms and the application of the triangle inequality in complex analysis. The conversation emphasizes the importance of correctly interpreting the definitions and properties of logarithms in the context of complex variables. Overall, the thread highlights the complexities involved in grasping the limits of complex functions as outlined by Palka.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Bruce P. Palka's book: An Introduction to Complex Function Theory ...

I am focused on Chapter 2: The Rudiments of Plane Topology ...

I need help with some aspects of a worked example in Palka's remarks in Section 2.2 Limits of Functions ...

Palka's remarks in Section 2.2 which include the example read as follows:View attachment 7366
In the above text from Palka Section 2.2 we read the following:" ... ... We need only observe that for $$z \neq 0 $$

$$ \lvert ( z + 1 + z \text{ Log } z) -1 \lvert = \lvert z + z \text{ Log } z \lvert = \lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert $$

$$\le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \lvert z \lvert \lvert \text{Arg } z \lvert \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \pi \lvert z \lvert $$ ... ...

... ... ... "
My questions relate to the above quoted equations/inequalities ... ...Question 1How does Palka get $$\lvert z + z \text{ Log } z \lvert = \lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert$$?Well ... my take ... ... Following Palka's definition of $$\text{ Log } z = \text{ ln } \lvert z \lvert + i \text{ Arg } z
$$
we get ...

$$\lvert z + z \text{ Log } z \lvert = \lvert z + z \text{ ln } \lvert z \lvert + i z \text{ Arg } z \lvert $$

BUT ...

$$\text{ln } \lvert z \lvert = \text{Log } \lvert z \lvert$$ since $$\text{Arg } \lvert z \lvert = 0$$ ... ... is that correct?

Question 2

How did Palka get

$$\lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \lvert z \lvert \lvert \text{Arg } z \lvert \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \pi \lvert z \lvert$$ ... ...
Well ... my take ... only up to a point .. then ?

Using the extended triangle inequality $$\lvert z_1 + z_2 + z_3 \lvert \le \lvert z_1 \lvert + \lvert z_2 \lvert + \lvert z_3 \lvert$$ we get ...

$$\lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert \le \lvert z \lvert + \lvert z \text{ Log } \lvert z \lvert \lvert + \lvert i z \text{Arg } z \lvert = \lvert z \lvert + \lvert z \lvert \lvert \text{ Log } \lvert z \lvert \lvert + \lvert i z \text{Arg } z \lvert$$ ... ... (*)

But how do we proceed from here ...?

Particular worries are as follows:

(1) In (*) above after using the equation $$\lvert z w \lvert = \lvert z \lvert \lvert w \lvert $$ I get the term $$\lvert z \lvert \lvert \text{ Log } \lvert z \lvert \lvert$$ ... but Palka gets $$\lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert$$ ... how does Palka get this expression in (*) ... what explains the discrepancy between my term and Palka's ... ?

(2) How do I deal with the term $$\lvert i z \text{Arg } z \lvert$$ in order to get $$\lvert z \lvert \lvert \text{Arg } z \lvert$$ on the right hand side of the inequality as Palka does ... ? In other words how do we demonstrate that $$\lvert i z \text{Arg } z \lvert \le \lvert z \lvert \lvert \text{Arg } z \lvert$$ ... ?Help will be much appreciated ... ...Peter=======================================================================================

I believe it would be helpful for readers of the above post to have access to Palka's definition and introductory discussion of logarithms of complex numbers ... so I am providing the same ... as follows ... https://www.physicsforums.com/attachments/7367
https://www.physicsforums.com/attachments/7368
 
Last edited:
Physics news on Phys.org
Peter said:
Question 1How does Palka get $$\lvert z + z \text{ Log } z \lvert = \lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert$$?Well ... my take ... ... Following Palka's definition of $$\text{ Log } z = \text{ ln } \lvert z \lvert + i \text{ Arg } z
$$
we get ...

$$\lvert z + z \text{ Log } z \lvert = \lvert z + z \text{ ln } \lvert z \lvert + i z \text{ Arg } z \lvert $$

BUT ...

$$\text{ln } \lvert z \lvert = \text{Log } \lvert z \lvert$$ since $$\text{Arg } \lvert z \lvert = 0$$ ... ... is that correct?

In the section that you posted, Palka writes "From now on we shall write $\operatorname{Log} x$ instead of $\ln x$ when $x > 0$.
Peter said:
Question 2

How did Palka get

$$\lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \lvert z \lvert \lvert \text{Arg } z \lvert \le \lvert z \lvert + \lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert + \pi \lvert z \lvert$$ ... ...
Well ... my take ... only up to a point .. then ?

Using the extended triangle inequality $$\lvert z_1 + z_2 + z_3 \lvert \le \lvert z_1 \lvert + \lvert z_2 \lvert + \lvert z_3 \lvert$$ we get ...

$$\lvert z + z \text{ Log } \lvert z \lvert + i z \text{ Arg } z \lvert \le \lvert z \lvert + \lvert z \text{ Log } \lvert z \lvert \lvert + \lvert i z \text{Arg } z \lvert = \lvert z \lvert + \lvert z \lvert \lvert \text{ Log } \lvert z \lvert \lvert + \lvert i z \text{Arg } z \lvert$$ ... ... (*)

But how do we proceed from here ...?

Particular worries are as follows:

(1) In (*) above after using the equation $$\lvert z w \lvert = \lvert z \lvert \lvert w \lvert $$ I get the term $$\lvert z \lvert \lvert \text{ Log } \lvert z \lvert \lvert$$ ... but Palka gets $$\lvert \lvert z \lvert \text{ Log } \lvert z \lvert \lvert$$ ... how does Palka get this expression in (*) ... what explains the discrepancy between my term and Palka's ... ?

(2) How do I deal with the term $$\lvert i z \text{Arg } z \lvert$$ in order to get $$\lvert z \lvert \lvert \text{Arg } z \lvert$$ on the right hand side of the inequality as Palka does ... ? In other words how do we demonstrate that $$\lvert i z \text{Arg } z \lvert \le \lvert z \lvert \lvert \text{Arg } z \lvert$$ ... ?

You overlooked $\lvert i \rvert = 1$ and $-\pi < \operatorname{Arg}(z) \le \pi$. Now try to proceed.
 
Euge said:
In the section that you posted, Palka writes "From now on we shall write $\operatorname{Log} x$ instead of $\ln x$ when $x > 0$.

You overlooked $\lvert i \rvert = 1$ and $-\pi < \operatorname{Arg}(z) \le \pi$. Now try to proceed.
Thanks for the help, Euge ...

Working on the example now ...

Peter
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K