Limits to Infinity: Exponential Function

  • Thread starter Thread starter BloodyFrozen
  • Start date Start date
  • Tags Tags
    Infinity Limits
Click For Summary
The discussion centers on evaluating limits involving exponential functions and rational expressions as x approaches infinity or negative infinity. Participants confirm the correct method of finding limits by first determining the limit of the argument of the exponential function before substituting it back into the function. They discuss specific examples, including limits that yield results of 1, 0, and -1, emphasizing the importance of understanding the behavior of functions at infinity. The conversation also touches on the application of L'Hôpital's Rule and alternative methods for solving limits without it, such as the squeeze theorem and known limits. Overall, the thread highlights the analytical techniques used in calculus to evaluate complex limits effectively.
  • #31
Four is killing me...

Confunction identities? <- nvm don't think that's it
 
Last edited:
Mathematics news on Phys.org
  • #32
multiply numerator and denominator by cos(x)+1.
 
  • #33
Ohhhhhhh, I tried that, but never thought about plugging in 0...fml

sin(x)/(cos(x)+1) ->

0/2=0

....wow (again)
 
  • #34
solution to 2 without using hospital or Taylor:
limx→inf (1+1/x)^x = e
<=> limx→inf xln(1+1/x) =1
<=> limx→0 ln(1+x)/x = 1
<=> limx→0 x - ln(1+x) = 0
<=> limx→0 (ex-1)/x = e^0 =1
 
  • #35
NeroKid said:
solution to 2 without using hospital or Taylor:
limx→inf (1+1/x)^x = e
<=> limx→inf xln(1+1/x) =1
<=> limx→0 ln(1+x)/x = 1
<=> limx→0 x - ln(1+x) = 0
<=> limx→0 (ex-1)/x = e^0 =1

I'm not quite following you. I know that (1+1/n)n = e as n->infinity
 
  • #36
u take the ln at the both side of limx --> inf (1+1/x)^x = e
and from there u switch to x' which equal to 1/x
 
  • #37
How did you get from here:
<=> limx→inf xln(1+1/x) =1
to here?:
<=> limx→0 ln(1+x)/x = 1
 
  • #38
limx→inf xln(1+1/x) =1
<=> lim(1/x)→0 xln(1+1/x)=1
call x' = 1/x
limx'→0 ln(1+x')/x' =1
 
  • #39
NeroKid said:
limx→inf xln(1+1/x) =1
<=> lim(1/x)→0 xln(1+1/x)=1
call x' = 1/x
limx'→0 ln(1+x')/x' =1

Ok, I see.
Thanks
 
  • #40
Lastly,

How did you get these two steps?

<=> limx→0 ln(1+x')/x' = 1
<=> limx→0 x - ln(1+x) = 0
 
Last edited:
  • #41
because limx→0 ln(1+x)/x = 1 and limx→0 ln(1+x) = 0 and limx→0 x =0
so limx→0 ln(1+x) = limx→0 x
 
  • #42
Got it. Thanks
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 54 ·
2
Replies
54
Views
6K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K