Lin Algebra Row Reduction (on variables)

Click For Summary
Row reduction is used to demonstrate that the determinant of the given matrix equals (b-a)(c-a)(c-b). The initial steps involve manipulating rows by subtracting multiples of the first row from the second and third rows, leading to confusion about the choice of coefficients. The user successfully applies cofactor expansion to simplify the expressions b^2-a^2 and c^2-a^2 into factored forms. There is uncertainty about achieving upper triangular form and the validity of row operations, particularly regarding multiplication. Ultimately, confirming the determinant involves further calculations to verify the factorization.
Aerosion
Messages
52
Reaction score
0

Homework Statement



Use row reduction to show that:

[1 1 1]
[a b c] = (b-a)(c-a)(c-b)
[a^2 b^2 c^2]

Homework Equations





The Attempt at a Solution



So I multiplied -a by row 1 and added it to row 2. I then multiplied -a^2 by row 1 and added it to row 3, which gave me:

[1 1 1]
[0 b-a c-a]
[0 b^2-a^2 c^2-a^2]

Now, at this point, I was already quite confused, as I don't know how I did that (I was following the book). Where did the -a and -a^2 come from? Thin air? How was I to know to multiply a (as opposed to b or c)?

Anyway, after that, I did cofactor expansion and expanded the b^2-a^2 and the c^2-a^2 to get (b-a)(b+a) and (c-a)(c+a). This is pretty much where I got up to. I think I'm close, but I don't know what to do next. Suggestions? Advice? Hmm?
 
Physics news on Phys.org
I think they are asking you to find the determinant of the matrix using row reduction. get the matrix in upper triangular form then product of diagonal entries is the determinant.
 
Well, I'm not sure how to put it in upper triangular form, as I'm not sure how to get these numbers to equal zero (unless I multiply -a to the first row, and I'm not sure if I can do that, since I don't know if you can multiply in row reduction).
 
Wait...R2 - aR1 and R3 - a^2R1, right? That would explain the first column...and how I got the second matrix...

Then do the cofactor expansion and take the determinant, which gets an equation that can factor out to (b-a)(c-a)(c-b)...is that right?
 
all you need is work it out and see...
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
974
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K