MHB Linear Algebra and Determinant

Swati
Messages
16
Reaction score
0
1(a) Construct a 4*4 matrix whose determinant is easy to compute using cofactor expansion but hard to evaluate using elementary row operations.

(b) Construct a 4*4 matrix whose determinant is easy to compute using elementary row operations but hard to evaluate using cofactor expansion
 
Physics news on Phys.org
Swati said:
1(a) Construct a 4*4 matrix whose determinant is easy to compute using cofactor expansion but hard to evaluate using elementary row operations.

Would a matrix with all elements zero except for those on the diagonal which are a random sample of size 4 from U(0,1) qualify?

(b) Construct a 4*4 matrix whose determinant is easy to compute using elementary row operations but hard to evaluate using cofactor expansion

Would a matrix with two rows equal but with values samples from U(0,1), and all other values sampled independently from U(0,1) qualify?

CB
 
what is U(0,1) ?
Please explain me, i couldn't understand.
 
Swati said:
what is U(0,1) ?
Please explain me, i couldn't understand.

U(0,1) - the uniform distribution on [0,1). The suggestion is to use a random matrix generated in the specified way. In one case it would be diagonal, so the co-factor method would give the determinant as the product of the diagonal elements, in the second case with two equal rows row operations would deduce it has zero determinant.

CB
 
Back
Top