MHB Linear Algebra and Determinant

Swati
Messages
16
Reaction score
0
1(a) Construct a 4*4 matrix whose determinant is easy to compute using cofactor expansion but hard to evaluate using elementary row operations.

(b) Construct a 4*4 matrix whose determinant is easy to compute using elementary row operations but hard to evaluate using cofactor expansion
 
Physics news on Phys.org
Swati said:
1(a) Construct a 4*4 matrix whose determinant is easy to compute using cofactor expansion but hard to evaluate using elementary row operations.

Would a matrix with all elements zero except for those on the diagonal which are a random sample of size 4 from U(0,1) qualify?

(b) Construct a 4*4 matrix whose determinant is easy to compute using elementary row operations but hard to evaluate using cofactor expansion

Would a matrix with two rows equal but with values samples from U(0,1), and all other values sampled independently from U(0,1) qualify?

CB
 
what is U(0,1) ?
Please explain me, i couldn't understand.
 
Swati said:
what is U(0,1) ?
Please explain me, i couldn't understand.

U(0,1) - the uniform distribution on [0,1). The suggestion is to use a random matrix generated in the specified way. In one case it would be diagonal, so the co-factor method would give the determinant as the product of the diagonal elements, in the second case with two equal rows row operations would deduce it has zero determinant.

CB
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
15
Views
5K
Replies
8
Views
2K
Replies
3
Views
3K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K