MHB Linear algebra. Rank. linear independence.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $V$ be a finite dimensional vector space. Let $T$ be a linear transformation on $V$ with eigenvalue $0$. A vector $v \in V$ is

said to have rank $r > 0$ w.r.t eigenvalue $0$ if $T^rv=0$ but $T^{r-1}v\neq 0$. Let $x,y \in V$ be linearly independent and have

ranks $r_1$ and $r_2$ w.r.t eigenvalue $0$ respectively. Show that $\{x,Tx,\ldots ,T^{r_1-1}x,y,Ty,\ldots , T^{r_2-1}y \}$ is a

linearly independent set of vectors.

I can see that $\{ x, Tx, \ldots , T^{r_1-1}x \}$ are Linearly Independent, and $\{ y, Ty, \ldots, T^{r_2-1}y \}$ are linearly independent, but now I am stuck. Please help.
 
Physics news on Phys.org
caffeinemachine said:
Let $V$ be a finite dimensional vector space. Let $T$ be a linear transformation on $V$ with eigenvalue $0$. A vector $v \in V$ is

said to have rank $r > 0$ w.r.t eigenvalue $0$ if $T^rv=0$ but $T^{r-1}v\neq 0$. Let $x,y \in V$ be linearly independent and have

ranks $r_1$ and $r_2$ w.r.t eigenvalue $0$ respectively. Show that $\{x,Tx,\ldots ,T^{r_1-1}x,y,Ty,\ldots , T^{r_2-1}y \}$ is a

linearly independent set of vectors.

I can see that $\{ x, Tx, \ldots , T^{r_1-1}x \}$ are Linearly Independent, and $\{ y, Ty, \ldots, T^{r_2-1}y \}$ are linearly independent, but now I am stuck. Please help.
As stated, this result is clearly false. For example, given $x$ satisfying those conditions for some $r_1>1$, you could take $y=Tx$ (and $r_2 = r_1-1$).

For the result to be true, you need some extra conditions, such as requiring that neither $x$ nor $y$ is in the range of $T$, and that $r_1\ne r_2$. Then the generalised eigenspaces generated by $x$ and $y$ will correspond to different Jordan blocks of $T$ and will therefore be linearly independent.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top