MHB Linear dependence of polynomical functions

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Trying to understand the material here. It says that "...the set of solutions is linearly independent on I if and only if W(y1, y2...yn) doesn't = 0 for every x in the interval. (W(y1, y2...yn) being the Wronskian.)

But then I read a comment on youtube: "your first example is wrong, the wronsky is only used to show linear independence. if your determinant is 0 , it doesn't always mean ur your vectors are linear dependent." I guess the wronskian was used for vectors here but I imagine the concept is same for DE's?

So I have this set of functions f1(x) = x, f2(x) = x^2, f3(x) = 4x - 3x^2

and I get the wronskian to = 0. So by the youtuber's comment does this mean these set of functions could either be linearly independent or dependent? How do you determine whether they're independent or dependent?

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
How do you determine whether they're independent or dependent?

Consider the vector space $\mathbb{R}_2[x]$ (polynomical functions with degree $\le 2$) and the canonical basis $B=\{1,x,x^2\}$. The respective coordinates are: $$[x]_B=(0,1,0)\;,\;[x^2]_B=(0,0,1)\;,\;[ 4x - 3x^2]_B=(0,4,-3)$$ But $\mbox{rank } \begin{bmatrix} 0 & 1 &\;\; 0\\ 0 & 0 & \;\;1 \\ 0 & 4 &-3\end{bmatrix}=2.$ We have no maximum rank, so the rows are linearly dependent. Using the standard isomorphism between vectors and coordinates, we conclude that $f_1(x)=x$, $f_2(x)=x^2$ and $f_3(x)=4x - 3x^2$ are linearly dependent.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top