Undergrad Linear fitting in physics experiments with errors

Click For Summary
In experimental physics, when measuring two linearly related quantities x and y with associated errors dxi and dyi, the standard least squares method may not suffice. Instead, the Maximum Likelihood Estimator can be used to account for these errors in the fitting process. Additionally, the Total Least Squares method is recommended for more accurately determining the linear fit parameters a and b, as well as their uncertainties da and db. These approaches help ensure that the results reflect the true relationship between the variables despite measurement errors. Understanding these methods is crucial for accurate data analysis in experimental physics.
kvothe18
Messages
2
Reaction score
0
Hello!

I have a question that maybe has to do more with Mathematics, but if you do experimental physics you find it quite often.

Let's assume that we want to measure two quantities x and y that we know that they relate to each other linearly. So we have a set of data points xi and yi, i=1,...,n, and we want to make a linear fit. According to the method of least squeares there exist formulas for a, b, where y=a+bx, and their errors da and db. These formulas, if I'm not wrong, are these in the following link: http://prntscr.com/iz15tk ( [ ] means sum)

But in the most common case, for each xi and yi value we have an error dxi and dyi, i =1,...,n respectively. In this case which are the formulas about a, b, da, db? Of course these values shoud be different from the first case. I've searched on the internet but I couldn't find anything in this general case.

Do you have any ideas?
Thank you.
 
Physics news on Phys.org
kvothe18 said:
Hello!

I have a question that maybe has to do more with Mathematics, but if you do experimental physics you find it quite often.

Let's assume that we want to measure two quantities x and y that we know that they relate to each other linearly. So we have a set of data points xi and yi, i=1,...,n, and we want to make a linear fit. According to the method of least squeares there exist formulas for a, b, where y=a+bx, and their errors da and db. These formulas, if I'm not wrong, are these in the following link: http://prntscr.com/iz15tk ( [ ] means sum)

But in the most common case, for each xi and yi value we have an error dxi and dyi, i =1,...,n respectively. In this case which are the formulas about a, b, da, db? Of course these values shoud be different from the first case. I've searched on the internet but I couldn't find anything in this general case.

Do you have any ideas?
Thank you.
What you are looking for is called a Maximum Likelihood Estimator.
 
Usually the error bars of data points are ignored when doing a least squares fit, as the slope and intercept should approach the "correct" value if there's a large enough number of data points and the error is not systematic.
 
I do not have a good working knowledge of physics yet. I tried to piece this together but after researching this, I couldn’t figure out the correct laws of physics to combine to develop a formula to answer this question. Ex. 1 - A moving object impacts a static object at a constant velocity. Ex. 2 - A moving object impacts a static object at the same velocity but is accelerating at the moment of impact. Assuming the mass of the objects is the same and the velocity at the moment of impact...

Similar threads

Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
10
Views
7K
  • · Replies 26 ·
Replies
26
Views
3K
Replies
3
Views
2K