MHB Linear Transformation in Linear Algebra: Impact & Motivation

matqkks
Messages
280
Reaction score
5
How important are linear transformations in linear algebra? In some texts linear transformations are introduced first and then the idea of a matrix. In other books linear transformations are relegated to being an application of matrices. What is the best way of introducing linear transformation on a linear algebra course? How do we motivate students to study transformations as part of linear algebra? What is their real impact?
 
Physics news on Phys.org
matqkks said:
How important are linear transformations in linear algebra? In some texts linear transformations are introduced first and then the idea of a matrix. In other books linear transformations are relegated to being an application of matrices. What is the best way of introducing linear transformation on a linear algebra course? How do we motivate students to study transformations as part of linear algebra? What is their real impact?
I have read Linear Algebra from Axler's "Linear Algebra Done Right". So I 'd say that Linear Algebra is all about linear transformations. Matrices are secondary. In Axler's book it is briefly discussed how many solutions a system of equations has and this problem can be solved using linear transformation. I don't know what would be the best way to introduce LT to beginners. If you follow Axler's book I think all your questions are answered simultaneously.
 
Here's an application of rotation matrices, which is one of the more important kinds of linear transformations. Rotation matrices are used in Lie Algebras, which show up in the solution of differential equations.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top