Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Link between quantummechanical probabilistics and entropy

  1. Oct 13, 2011 #1
    I am an amateur on physics. Lately I have been thinking about this: Is there a link between quantummechanical probabilistics and entropy?

    I can put it into words like this: "Entropy: The greatest possible chance that outcomes even out (are as similar as possible)."

    For instance: The chance that an off-axis polarized photon passes the filter. Sometimes it does, sometimes it doesn't, but take a large number of measurements, and the correlation between angle and probable pass-through are inexcapable. I don't know very much about thermodynamics, but I figured that pressure in a closed box with gas also 'evens out' due to entropy (the particles becomes evenly spread), so that the probability a particle has a specific momentum becomes as great as possible. Similar, the probability a photon passes the filter is directly proportional to the angle of the filter, so the proportion of particles that pass to those blocked is 'evenly spread'... (grosso modo, each photon 'behaves' similar, or at least, becomes more statistically probable to do so...)

    Does this make the tinyest bit sense?

    I hope you can forgive me my poor english.
     
    Last edited: Oct 13, 2011
  2. jcsd
  3. Oct 13, 2011 #2

    Vanadium 50

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    First, I don't see why we need a different definition of entropy than what is in the textbooks.

    Second, there is no tendency for outcomes to "even out". Every trial is independent of previois trials.
     
  4. Oct 14, 2011 #3
    I was thinking there might be a correlation between outcomes of different measurements, like in quantumentanglement, a way of nature to compensate information that occurs in one part in the universe, in the other part of it, so that the independent appearance of outcomes is just an illusion. I am not sure if I state this correctly: Of all the states of a given system, the one with the highest entropy is the most likely one.

    I feel my knowledge falls short here :tongue: I will try to catch up a bit. :smile:
     
    Last edited: Oct 14, 2011
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook