- #1

- 280

- 70

## Main Question or Discussion Point

I would like to know the solution to Liouville equation

∂ρ/∂t=-{ρ,H}

given the initial condition

ρ(t=0)=δ(q,p)

where δ(q,p) is a dirac delta centered in some point (q,p) in phase space.

I have the feeling, but I'm not sure, that the solution is of the form

ρ(t)=δ(q(t),p(t))

where q(t) and p(t) are the trajectories from Hamilton equations.

Any help?

∂ρ/∂t=-{ρ,H}

given the initial condition

ρ(t=0)=δ(q,p)

where δ(q,p) is a dirac delta centered in some point (q,p) in phase space.

I have the feeling, but I'm not sure, that the solution is of the form

ρ(t)=δ(q(t),p(t))

where q(t) and p(t) are the trajectories from Hamilton equations.

Any help?