I Liouville's Theorem and Poincare Recurrence Theorem

AI Thread Summary
Liouville's Theorem asserts that the volume of a region in phase space remains constant along Hamiltonian flows, implying that the total time derivative of volume, dV/dt, equals zero. In contrast, the Poincare Recurrence Theorem suggests that the volume swept out in time t, V(t), has a constant rate of change, dV/dt = C, where C is non-negative. This leads to confusion, as Liouville's Theorem would imply that C should be zero. The discussion highlights the need for clarity regarding whether the reference is to the total or partial time derivative in the context of these theorems. Further context from the lecture notes is necessary to resolve the apparent contradiction.
dyn
Messages
774
Reaction score
63
Hi.
I am working through some notes on the above 2 theorems.
Liouville's Theorem states that the volume of a region of phase space is constant along Hamiltonian flows so i assume this means dV/dt = 0
In the notes on the Poincare Recurrence Theorem it states that if V(t) is the volume of phase space swept out in time t then since volume is preserved dV/dt = C where C≥ 0 is constant. Surely by Liouville's Theorem C should be zero ?
Thanks
 
Physics news on Phys.org
Liouville's theorem refers to the phase-space volume of a Hamiltonian system. Let ##q## and ##p## the generalized coordinates and their canonical momenta. Then the trajectory of the system in phase space is determined by Hamilton's canonical equations,
$$\dot{q}=\partial_p H, \quad \dot{p}=-\partial_q H.$$
Let's denote the solution of the corresponding initial-value problem, the "Hamiltonian flow of phase space" with
$$q(q_0,p_0,t),p(q_0,p_0,t).$$
Then the phase-space volume element is
$$\mathrm{d}^{2n} (q,p)=\mathrm{d}^{2n} (q_0,p_0) \mathrm{det} \left (\frac{\partial(q,p)}{\partial(q_0,p_0)} \right)=\mathrm{d}^{2n} (q_0,p_0) D(t,t_0).$$
The time derivative is
$$\mathrm{d}_t \mathrm{d}^{2n} (q,p)|_{t=t_0}=\nabla_{q_0} \cdot \dot{q} + \nabla_{p_0} \cdot \dot{p} = \nabla_{q_0} \cdot \nabla_{p_0} H - \nabla_{p_0} \cdot \nabla_{q_0} H.$$
Now the Jacobi determined fulfills the composition rule
$$D(t,t_0)=D(t,t_1) D(t_1,t_0).$$
From this
$$\partial_t D(t,t_0) = \partial_t D(t,t_1) D(t_1,t_0).$$
For ##t_1 \rightarrow t## we get from the calculation above 0 on the right-hand side and thus
$$\partial_t D(t,t_0)=0.$$
This implies that the phase-space volume does not change under the Hamiltonian flow of phase space.

I don't know, what you mean concerning Poincare's recurrence theorem. Which book/paper are you studying?
 
Thanks for your reply. Regarding the volume element in phase space ; is it the total time derivative that is zero ; ie. dV/dt = 0 or the partial derivative wrt time ?
As regards the Poincare Recurrence Theorem i am studying some lecture notes and at the start of the proof it states that if V(t) is the volume of phase space swept out in time t then since volume is preserved dV/dt = C where C≥ 0 is constant.
Surely by Liouville's Theorem C should be zero ?
 
It's the total time derivative.

I still don't understand the argument you quote from your lecture notes since indeed Liouville's theorem states ##C=0##, but to try to understand what the author means, I'd need more context.
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top