I Liouville's Theorem and Poincare Recurrence Theorem

Click For Summary
Liouville's Theorem asserts that the volume of a region in phase space remains constant along Hamiltonian flows, implying that the total time derivative of volume, dV/dt, equals zero. In contrast, the Poincare Recurrence Theorem suggests that the volume swept out in time t, V(t), has a constant rate of change, dV/dt = C, where C is non-negative. This leads to confusion, as Liouville's Theorem would imply that C should be zero. The discussion highlights the need for clarity regarding whether the reference is to the total or partial time derivative in the context of these theorems. Further context from the lecture notes is necessary to resolve the apparent contradiction.
dyn
Messages
774
Reaction score
63
Hi.
I am working through some notes on the above 2 theorems.
Liouville's Theorem states that the volume of a region of phase space is constant along Hamiltonian flows so i assume this means dV/dt = 0
In the notes on the Poincare Recurrence Theorem it states that if V(t) is the volume of phase space swept out in time t then since volume is preserved dV/dt = C where C≥ 0 is constant. Surely by Liouville's Theorem C should be zero ?
Thanks
 
Physics news on Phys.org
Liouville's theorem refers to the phase-space volume of a Hamiltonian system. Let ##q## and ##p## the generalized coordinates and their canonical momenta. Then the trajectory of the system in phase space is determined by Hamilton's canonical equations,
$$\dot{q}=\partial_p H, \quad \dot{p}=-\partial_q H.$$
Let's denote the solution of the corresponding initial-value problem, the "Hamiltonian flow of phase space" with
$$q(q_0,p_0,t),p(q_0,p_0,t).$$
Then the phase-space volume element is
$$\mathrm{d}^{2n} (q,p)=\mathrm{d}^{2n} (q_0,p_0) \mathrm{det} \left (\frac{\partial(q,p)}{\partial(q_0,p_0)} \right)=\mathrm{d}^{2n} (q_0,p_0) D(t,t_0).$$
The time derivative is
$$\mathrm{d}_t \mathrm{d}^{2n} (q,p)|_{t=t_0}=\nabla_{q_0} \cdot \dot{q} + \nabla_{p_0} \cdot \dot{p} = \nabla_{q_0} \cdot \nabla_{p_0} H - \nabla_{p_0} \cdot \nabla_{q_0} H.$$
Now the Jacobi determined fulfills the composition rule
$$D(t,t_0)=D(t,t_1) D(t_1,t_0).$$
From this
$$\partial_t D(t,t_0) = \partial_t D(t,t_1) D(t_1,t_0).$$
For ##t_1 \rightarrow t## we get from the calculation above 0 on the right-hand side and thus
$$\partial_t D(t,t_0)=0.$$
This implies that the phase-space volume does not change under the Hamiltonian flow of phase space.

I don't know, what you mean concerning Poincare's recurrence theorem. Which book/paper are you studying?
 
Thanks for your reply. Regarding the volume element in phase space ; is it the total time derivative that is zero ; ie. dV/dt = 0 or the partial derivative wrt time ?
As regards the Poincare Recurrence Theorem i am studying some lecture notes and at the start of the proof it states that if V(t) is the volume of phase space swept out in time t then since volume is preserved dV/dt = C where C≥ 0 is constant.
Surely by Liouville's Theorem C should be zero ?
 
It's the total time derivative.

I still don't understand the argument you quote from your lecture notes since indeed Liouville's theorem states ##C=0##, but to try to understand what the author means, I'd need more context.
 
Can someone here check my math? On an euc (electric unicycle), the motor has to exact the same amount of torque onto the wheel+tire that the rider exerts onto the euc, otherwise the frame would rotate (due to the motor exerting an equal in magnitude but opposite direction onto the frame than it does onto the wheel, a Newton third law like pair of torques). Choosing some arbitrary numbers: rider = 200 lb euc = 100 lb rider + euc = 300 lb tire radius = .83333 foot (10 inches) rider center...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K