(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

[tex]\frac{dy}{dx} = \sqrt{xy^3} , y(0) = 4[/tex]

3. The attempt at a solution

So;

[tex]\frac{dy}{dx} = x^{\frac{1}{2}}y^{\frac{3}{2}}

\Rightarrow \int y^{-\frac{3}{2}}dy = \int x^{\frac{1}{2}}dx

\Rightarrow -2y^{-\frac{1}{2}} = \frac{2}{3}x^{\frac{3}{2}} + C

\Rightarrow y^{-\frac{1}{2}} = -\left(\frac{1}{3}x^{\frac{3}{2}} + \frac{1}{2}C\right)

\Rightarrow y^{\frac{1}{2}} = -\left(\frac{1}{\frac{1}{3}x^{\frac{3}{2}} + \frac{1}{2}C}\right)

\Rightarrow y = \frac{1}{(\frac{1}{3}x^{\frac{3}{2}} + \frac{1}{2}C)^2}

[/tex]

Then Putting in the conditions mentioned above:

[tex]

4 = \frac{1}{(0 + \frac{1}{2}C)^2}

\Rightarrow \frac{1}{4}C^2 = \frac{1}{4}

\Rightarrow C = 1

[/tex]

Yet my book shows [tex]C = \frac{3}{2}[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Little help with differential equations

**Physics Forums | Science Articles, Homework Help, Discussion**