Undergrad Locally inertial reference frame problem

Click For Summary
The discussion revolves around proving that the Christoffel symbols vanish at the origin of a coordinate transformation involving a Taylor polynomial. The user successfully derived key derivatives but struggled with finding the inverse of the Jacobian. A simpler approach was suggested, involving the geodesic equations, which directly shows that the second derivative vanishes at the specified point. This realization helped clarify the confusion regarding the transformation and the matrix representation of the Christoffel symbols. Overall, the conversation emphasizes the importance of recognizing simpler methods in complex problems.
Pencilvester
Messages
213
Reaction score
52
Hey PF, I am working on a problem set, and one of the problems is proving that the Christoffel symbols vanish at the origin of the coordinates ##y^{\alpha}## given by the coordinate transformation: $$y^\alpha (x) = x^\alpha - x^\alpha_{(0)} + \frac {1} {2} (x^\mu - x^\mu_{(0)} )(x^\nu - x^\nu_{(0)} ) \Gamma^\alpha_{(0) \mu \nu}$$ Where anything with a ##(0)## subscript is evaluated at some particular point.
Figuring out that ##\frac {\partial y^{\alpha}} {\partial x^{\mu}} = \delta^{\alpha}_{\mu} + (x^{\lambda} - x^{\lambda}_{(0)}) \Gamma^{\alpha}_{(0) \mu \lambda}## and that ##\frac {\partial^2 y^{\alpha}} {\partial x^\mu \partial x^\nu} = \Gamma^{\alpha}_{(0) \mu \nu}## was fairly straightforward, and I also know the transformation law for the Christoffel symbols, but I can't figure out how to find the inverse of the Jacobian—the ##\frac {\partial x^\alpha} {\partial y^\mu}##’s. Here’s part of the solution (they use squiggles instead of ##y##):
4F71611A-04D6-4EFA-AE3B-5B7A40C56F94.jpeg

They’re clearly using a Taylor polynomial, but I don’t understand how to find that the unknown matrix ##A^\alpha_{\mu \beta}## ends up being ##\Gamma^\alpha_{\mu \beta}##. I feel like I must be missing something super obvious. Would someone be so kind as to point out what I’m missing?
 

Attachments

  • 4F71611A-04D6-4EFA-AE3B-5B7A40C56F94.jpeg
    4F71611A-04D6-4EFA-AE3B-5B7A40C56F94.jpeg
    12.3 KB · Views: 507
Physics news on Phys.org
The chain rule.
$$
\newcommand{\dd}[2]{\frac{\partial #1}{\partial #2}}
\dd{x^\alpha}{y^\beta} \dd{y^\beta}{x^\gamma} = \dd{x^\alpha}{x^\gamma} = \delta^\alpha_\gamma.
$$
Insert the Taylor expansion into the above expression along with the coordinate transformation and identify ##A## from the linear term in ##x - x_0##.
 
  • Like
Likes Pencilvester
It should be noted that there is a significantly easier way of showing this. Just consider the geodesic equations in ##x## and show that they imply ##\ddot y^\mu = 0## at ##x_0##.
 
  • Like
Likes Pencilvester
Orodruin said:
The chain rule.
Oh, duh. Yup, that would be the obvious thing I was missing.

Orodruin said:
It should be noted that there is a significantly easier way of showing this. Just consider the geodesic equations in ##x## and show that they imply ##\ddot y^\mu = 0## at ##x_0##.
That definitely is much simpler and straightforward. Thanks!
 
Pencilvester said:
Yup, that would be the obvious thing I was missing.
Sometimes you need to be pointed to the trees in the forest... :wink:
 
  • Like
Likes Pencilvester
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 7 ·
Replies
7
Views
699
  • · Replies 38 ·
2
Replies
38
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
903
  • · Replies 22 ·
Replies
22
Views
1K
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K