MHB Locating Points for Vector Field $F$: $F_x=0$, $F_y=0$, and $|F_x|=1$

AI Thread Summary
The discussion focuses on determining specific loci for the vector field \( F=2(x+y)\sin\pi za_x-(x^2+y)a_y+\left(\frac{10}{x^2+y^2}\right)a_z \). For the condition \( F_x=0 \), it is concluded that \( z \) must be an integer and \( x \) must equal zero. There are no points where \( F_y=0 \) since the coefficient of \( a_y \) is always non-zero. The equation for \( |F_x|=1 \) results in a complex expression involving \( x \), \( y \), and \( z \). Further simplification of this equation remains uncertain, indicating the need for additional insights.
paulmdrdo1
Messages
382
Reaction score
0
Given Vector Field: $F=2(x+y)\sin\pi za_x-(x^2+y)a_y+\left(\frac{10}{x^2+y^2}\right)a_z$ specify the locus of all points at which a.) $F_x=0$ b.) $F_y=0$ c.) $|F_x|=1$

please help me get started with this. thanks!
 
Mathematics news on Phys.org
paulmdrdo said:
Given Vector Field: $F=2(x+y)\sin\pi za_x-(x^2+y)a_y+\left(\frac{10}{x^2+y^2}\right)a_z$ specify the locus of all points at which a.) $F_x=0$ b.) $F_y=0$ c.) $|F_x|=1$

please help me get started with this. thanks!

Hi paulmdrdo, :)

I am assuming that \(a_x,\,a_y\mbox{ and }a_z\) stands for basis vectors of some coordinate system. For (a), take the partial derivative of $F$ with respect to $x$. You will get,

\[2\sin(\pi z)a_x-2xa_y-\frac{20x}{(x^2+y^2)^2}a_z=0\]

\[\Rightarrow z\in \mathbb{Z} \mbox{ and }x = 0\]

For (b) notice that the coefficient of \(a_y\) is $-(x^2+y)$. Therefore the coefficient of $a_y$ in $F_y$ would be 1. Hence there aren't any points at which $F_y=0$.

For $(\mbox{c})$ you will get,

\[2\sqrt{\sin^{2}\pi z +x^2+\frac{100x^2}{(x^2+y^2)^4}}=1\]

This equation gives out all the points at which $|F_x|=1$. I am not sure whether we can simplify further. I hope somebody else might be able to come up with a better solution. :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
7
Views
1K
Replies
2
Views
1K
Replies
7
Views
2K
Replies
1
Views
1K
Replies
6
Views
1K
Replies
8
Views
2K
Replies
1
Views
3K
Back
Top