Location of point mass based on graphs

  • Thread starter Thread starter songoku
  • Start date Start date
  • Tags Tags
    Graphs Waveform
AI Thread Summary
The discussion focuses on determining the location of a point mass based on waveforms at a specific time. At t = 1 s, the waveform indicates two positions where y = 0, specifically at x = 0 m and x = 2 m. However, it is clarified that the point mass moves vertically and not in the direction of wave propagation. The key realization is that at t = 1 s, the point mass is moving downwards, leading to the conclusion that the correct location is x = 0 m. The conversation emphasizes understanding the distinction between the wave's phase and the motion of the point mass.
songoku
Messages
2,488
Reaction score
393
Homework Statement
A simple harmonic transverse wave is travelling in the medium along negative x-direction. The waveform at t=1 s is shown in Figure a. The time dependence of displacement of a point mass in the medium is shown in Figure b. This point mass may be located at...
A) x = 0 m
B) x = 1 m
C) x = 2 m
D) x = 3 m
Relevant Equations
Not sure
1688260093649.png


Since figure (a) shows the waveform at t = 1 s, I also look at figure (b) when t = 1 s. The value of y is zero so I try to find the location of x from figure (a) for which y = 0. There are two value of x, 0 and 2 m.

Let say x = 0 is point P and x = 2 m is point Q. The period is 4 s so at t = 1 s, the wave has travelled to left for a quarter wave so initially point P is at x = 1 m and point Q is at x = 3 m so I think the answer is either B or D but I don't know how to determine which one is correct.

Thanks
 
Physics news on Phys.org
You're mistaking the point of constant phase on the wave with the location of the point mass. The point mass moves vertically; it doesn't move along the direction of propagation of the wave.
 
  • Like
Likes songoku and Lnewqban
songoku said:
... Since figure (a) shows the waveform at t = 1 s, I also look at figure (b) when t = 1 s. The value of y is zero so I try to find the location of x from figure (a) for which y = 0. There are two value of x, 0 and 2 m.
It is also important to consider either the point is moving upwards or downwards at t=1 s.
Imagine a paper ship floating on a lake, staying at same place, while riding (up and down) a wave caused by a stone falling nearby.
 
vela said:
You're mistaking the point of constant phase on the wave with the location of the point mass. The point mass moves vertically; it doesn't move along the direction of propagation of the wave.
Ah yes
Lnewqban said:
It is also important to consider either the point is moving upwards or downwards at t=1 s.
Imagine a paper ship floating on a lake, staying at same place, while riding (up and down) a wave caused by a stone falling nearby.
I think I get it. At t = 1 s, the mass is moving downwards so the answer should be x = 0 since x = 2 m is moving upwards.

Thank you very much for the help and explanation vela and Lnewqban
 
  • Like
Likes SammyS and Lnewqban
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top