Log Questions: Answers to x=2 & x=10^3

  • Thread starter Thread starter Death
  • Start date Start date
Click For Summary
The discussion addresses two logarithmic problems that require clarification on their solutions. In Problem 1, the equation simplifies to log3(1/(x+1)) = -1, leading to x = 2 after solving. Problem 2 involves the equation 6logx = 2(logx)^2, which simplifies to 3 = logx after dividing both sides by 2logx. This results in x = 10^3. The participants confirm the steps taken to arrive at these solutions, ensuring clarity in the logarithmic transformations.
Death
Messages
10
Reaction score
0
I need some help on two log questions. I do understand everything of the problem until the final answer, it does not make sense.

Problem 1:
log3(x-1)^2 - log3(x^2 -1) = -1 + log3(x-1)

2log3(x-1) - log3(x^2 -1) = -1 + log3(x-1)

2log3(x-1) - log3(x-1) - log3(x^2 -1) = -1

log3(x-1) - log3(x^2 -1) = -1

log3 x-1/(x-1)(x+1) = -1

log3 1/x+1 = -1

=3^-1 = 1/3

x = 2 <=== why does it equal two?

Problem 2:
logx^5 + log x = (log x)(2logx)
5logx + logx = 2(logx)^2
6logx = 2(logx)^2
3 = logx <=== why does it equal 3? How does it turn from 6logx to 3?
x = 10^3

Thank you!
 
Mathematics news on Phys.org
Originally posted by Death
I need some help on two log questions. I do understand everything of the problem until the final answer, it does not make sense.

Problem 1:
log3(x-1)^2 - log3(x^2 -1) = -1 + log3(x-1)

2log3(x-1) - log3(x^2 -1) = -1 + log3(x-1)

2log3(x-1) - log3(x-1) - log3(x^2 -1) = -1

log3(x-1) - log3(x^2 -1) = -1

log3 x-1/(x-1)(x+1) = -1

log3 1/x+1 = -1

=3^-1 = 1/3

x = 2 <=== why does it equal two?

Problem 2:
logx^5 + log x = (log x)(2logx)
5logx + logx = 2(logx)^2
6logx = 2(logx)^2
3 = logx <=== why does it equal 3? How does it turn from 6logx to 3?
x = 10^3

Thank you!

Problem 1
You got a little sloppy with parentheses

log3 x-1/(x-1)(x+1) = -1

log3 1/x+1 = -1

should be

log3 (x-1)/(x-1)(x+1) = -1

log3 1/(x+1) = -1

raise three to the power of each side yields

1/(x+1)=3^(-1)=1/3

1/(x+1)=1/3
x+1=3
x=2


Problem 2

6logx = 2(logx)^2
3 = logx <=== why does it equal 3? How does it turn from 6logx to 3?

both sides were divided by 2logx

6logx/2logx=3

2(logx)^2/2logx=logx

Njorl
 
Thanks buddy.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 16 ·
Replies
16
Views
929
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K