MHB Logic problem with arithmetic and inequalities

AI Thread Summary
The discussion centers around a logic problem involving arithmetic and inequalities, specifically the invalid conclusion that "2 is less than or equal to zero." Participants analyze the premises using logical statements and transformations, highlighting the flaws in reasoning. They emphasize that the initial statements can be manipulated but do not lead to the conclusion that 2 is less than or equal to zero. The conversation also touches on the implications of defining logical statements and the necessity of sound reasoning in formal systems. Ultimately, the conclusion cannot be proven within a sound logical framework.
solakis1
Messages
407
Reaction score
0
Given:

1)it is not true that : 2>0 and 2+3 =7

2)if it is not true that 2>0 then 2 is less or equal to zero

3)if 2+3 =7 ,then 3+3 =8

4) but 3+3 is not equal to 8

Then prove:

2 is less or equal to zero
 
Physics news on Phys.org
Re: logic

It's an invalid conclusion, obviously. The problem comes as follows:

Let $A$ be the statement that $2>0$, and $B$ be the statement that $2+3=7$. Let $C$ be the statement that $2\le 0$. Let $D$ be the statement that $3+3=8$. Then your premisses are as follows:

\begin{align*}
& \lnot(A \land B) \\
& \lnot A \implies C \\
& B \implies D\\
& \lnot D\\
& \therefore C.
\end{align*}
The first statement can be transformed, via DeMorgan, to
$$\lnot A \lor \lnot B.$$
So your assumption of $\lnot D$ could, via modus tollens, give you $\lnot B$. But then, analyzing the first statement in its DeMorgan form, you are now stating that one of the options of the disjunction is true. That in no way implies that the other disjunct is true. So your reasoning chain ends. You cannot claim that $\lnot A$ is true.
 
Last edited:
Re: logic

Ackbach said:
It's an invalid conclusion, obviously. The problem comes as follows:

Let $A$ be the statement that $2<0$, and $B$ be the statement that $2+3=7$. Let $C$ be the statement that $2\le 0$. Let $D$ be the statement that $3+3=8$. Then your premisses are as follows:

\begin{align*}
& \lnot(A \land B) \\
& \lnot A \implies C \\
& B \implies D\\
& \lnot D\\
& \therefore C.
\end{align*}
The first statement can be transformed, via DeMorgan, to
$$\lnot A \lor \lnot B.$$
So your assumption of $\lnot D$ could, via modus tollens, give you $\lnot B$. But then, analyzing the first statement in its DeMorgan form, you are now stating that one of the options of the disjunction is true. That in no way implies that the other disjunct is true. So your reasoning chain ends. You cannot claim that $\lnot A$ is true.

why should you not put :

$\neg B$ for $3+2=7$ since $2+3=7$ is false
 
Re: logic

solakis said:
why should you not put :

$\neg B$ for $3+2=7$ since $2+3=7$ is false

Evgeny can correct me if I'm wrong, but I think if you're in a two-valued logic system, where $\lnot( \lnot B)=B$, then it doesn't matter which you use - just a matter of definition. If you choose $B$ the way I have, it's a false proposition. If you choose your definition, it's a true proposition. You'd have to change your assumptions if you changed your definition, but the logic would work out analogously.
 
Re: logic

Ackbach said:
Let $A$ be the statement that $2<0$
This should say, $2 > 0$.

solakis said:
why should you not put :

$\neg B$ for $3+2=7$ since $2+3=7$ is false
One has the right to introduce any notation. Abbreviating some expression by a variable is not a logical step; it does not change a problem in any essential way,

The premises in the OP are true, say, on integers, and the conclusion is not. So the conclusion cannot be proved in any formal system that is sound with respect to integers. (Regular logic is sound with respect to all models.)
 
Re: logic

Evgeny.Makarov said:
This should say, $2 > 0$.

Thank you! I've corrected that.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top