Logic problem with arithmetic and inequalities

Click For Summary
SUMMARY

The discussion centers on a logic problem involving arithmetic and inequalities, specifically the invalid conclusion that "2 is less than or equal to zero." The premises include statements about the truth values of "2 > 0" and "2 + 3 = 7," which are analyzed using logical transformations such as DeMorgan's laws and modus tollens. The participants clarify that the reasoning chain fails because the truth of one disjunct does not imply the truth of the other, leading to the conclusion that the argument is fundamentally flawed.

PREREQUISITES
  • Understanding of propositional logic and truth values
  • Familiarity with DeMorgan's laws
  • Knowledge of modus tollens
  • Basic arithmetic operations and their properties
NEXT STEPS
  • Study propositional logic and its applications in mathematical proofs
  • Learn about DeMorgan's laws in detail
  • Explore the concept of soundness in formal logic systems
  • Investigate common logical fallacies and how to identify them
USEFUL FOR

Mathematicians, logic enthusiasts, students studying formal logic, and anyone interested in understanding the foundations of logical reasoning and argumentation.

solakis1
Messages
407
Reaction score
0
Given:

1)it is not true that : 2>0 and 2+3 =7

2)if it is not true that 2>0 then 2 is less or equal to zero

3)if 2+3 =7 ,then 3+3 =8

4) but 3+3 is not equal to 8

Then prove:

2 is less or equal to zero
 
Physics news on Phys.org
Re: logic

It's an invalid conclusion, obviously. The problem comes as follows:

Let $A$ be the statement that $2>0$, and $B$ be the statement that $2+3=7$. Let $C$ be the statement that $2\le 0$. Let $D$ be the statement that $3+3=8$. Then your premisses are as follows:

\begin{align*}
& \lnot(A \land B) \\
& \lnot A \implies C \\
& B \implies D\\
& \lnot D\\
& \therefore C.
\end{align*}
The first statement can be transformed, via DeMorgan, to
$$\lnot A \lor \lnot B.$$
So your assumption of $\lnot D$ could, via modus tollens, give you $\lnot B$. But then, analyzing the first statement in its DeMorgan form, you are now stating that one of the options of the disjunction is true. That in no way implies that the other disjunct is true. So your reasoning chain ends. You cannot claim that $\lnot A$ is true.
 
Last edited:
Re: logic

Ackbach said:
It's an invalid conclusion, obviously. The problem comes as follows:

Let $A$ be the statement that $2<0$, and $B$ be the statement that $2+3=7$. Let $C$ be the statement that $2\le 0$. Let $D$ be the statement that $3+3=8$. Then your premisses are as follows:

\begin{align*}
& \lnot(A \land B) \\
& \lnot A \implies C \\
& B \implies D\\
& \lnot D\\
& \therefore C.
\end{align*}
The first statement can be transformed, via DeMorgan, to
$$\lnot A \lor \lnot B.$$
So your assumption of $\lnot D$ could, via modus tollens, give you $\lnot B$. But then, analyzing the first statement in its DeMorgan form, you are now stating that one of the options of the disjunction is true. That in no way implies that the other disjunct is true. So your reasoning chain ends. You cannot claim that $\lnot A$ is true.

why should you not put :

$\neg B$ for $3+2=7$ since $2+3=7$ is false
 
Re: logic

solakis said:
why should you not put :

$\neg B$ for $3+2=7$ since $2+3=7$ is false

Evgeny can correct me if I'm wrong, but I think if you're in a two-valued logic system, where $\lnot( \lnot B)=B$, then it doesn't matter which you use - just a matter of definition. If you choose $B$ the way I have, it's a false proposition. If you choose your definition, it's a true proposition. You'd have to change your assumptions if you changed your definition, but the logic would work out analogously.
 
Re: logic

Ackbach said:
Let $A$ be the statement that $2<0$
This should say, $2 > 0$.

solakis said:
why should you not put :

$\neg B$ for $3+2=7$ since $2+3=7$ is false
One has the right to introduce any notation. Abbreviating some expression by a variable is not a logical step; it does not change a problem in any essential way,

The premises in the OP are true, say, on integers, and the conclusion is not. So the conclusion cannot be proved in any formal system that is sound with respect to integers. (Regular logic is sound with respect to all models.)
 
Re: logic

Evgeny.Makarov said:
This should say, $2 > 0$.

Thank you! I've corrected that.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K