Logic problem with arithmetic and inequalities

Click For Summary

Discussion Overview

The discussion revolves around a logic problem involving arithmetic and inequalities, specifically examining the validity of a conclusion drawn from a set of premises. Participants analyze the logical structure and implications of the statements provided, focusing on the relationships between the propositions.

Discussion Character

  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants assert that the conclusion drawn in the original post is invalid, pointing out flaws in the reasoning chain and the misuse of logical implications.
  • One participant proposes a formal representation of the premises using logical symbols and discusses the application of DeMorgan's laws to analyze the statements.
  • Another participant questions the notation used for the statements, suggesting that different definitions could lead to different interpretations of the truth values.
  • There is a correction regarding the initial statement about the relationship between 2 and 0, with participants clarifying that it should state $2 > 0$ instead of $2 < 0$.
  • One participant emphasizes that the premises are true within the context of integers, suggesting that the conclusion cannot be proven in a sound formal system.

Areas of Agreement / Disagreement

Participants generally disagree on the validity of the conclusion, with multiple competing views on the logical structure and implications of the premises. The discussion remains unresolved regarding the correctness of the original argument.

Contextual Notes

There are limitations in the assumptions made by participants, particularly regarding the definitions of the statements and the context in which the logic is applied. The discussion highlights the dependence on the interpretation of logical propositions.

solakis1
Messages
407
Reaction score
0
Given:

1)it is not true that : 2>0 and 2+3 =7

2)if it is not true that 2>0 then 2 is less or equal to zero

3)if 2+3 =7 ,then 3+3 =8

4) but 3+3 is not equal to 8

Then prove:

2 is less or equal to zero
 
Physics news on Phys.org
Re: logic

It's an invalid conclusion, obviously. The problem comes as follows:

Let $A$ be the statement that $2>0$, and $B$ be the statement that $2+3=7$. Let $C$ be the statement that $2\le 0$. Let $D$ be the statement that $3+3=8$. Then your premisses are as follows:

\begin{align*}
& \lnot(A \land B) \\
& \lnot A \implies C \\
& B \implies D\\
& \lnot D\\
& \therefore C.
\end{align*}
The first statement can be transformed, via DeMorgan, to
$$\lnot A \lor \lnot B.$$
So your assumption of $\lnot D$ could, via modus tollens, give you $\lnot B$. But then, analyzing the first statement in its DeMorgan form, you are now stating that one of the options of the disjunction is true. That in no way implies that the other disjunct is true. So your reasoning chain ends. You cannot claim that $\lnot A$ is true.
 
Last edited:
Re: logic

Ackbach said:
It's an invalid conclusion, obviously. The problem comes as follows:

Let $A$ be the statement that $2<0$, and $B$ be the statement that $2+3=7$. Let $C$ be the statement that $2\le 0$. Let $D$ be the statement that $3+3=8$. Then your premisses are as follows:

\begin{align*}
& \lnot(A \land B) \\
& \lnot A \implies C \\
& B \implies D\\
& \lnot D\\
& \therefore C.
\end{align*}
The first statement can be transformed, via DeMorgan, to
$$\lnot A \lor \lnot B.$$
So your assumption of $\lnot D$ could, via modus tollens, give you $\lnot B$. But then, analyzing the first statement in its DeMorgan form, you are now stating that one of the options of the disjunction is true. That in no way implies that the other disjunct is true. So your reasoning chain ends. You cannot claim that $\lnot A$ is true.

why should you not put :

$\neg B$ for $3+2=7$ since $2+3=7$ is false
 
Re: logic

solakis said:
why should you not put :

$\neg B$ for $3+2=7$ since $2+3=7$ is false

Evgeny can correct me if I'm wrong, but I think if you're in a two-valued logic system, where $\lnot( \lnot B)=B$, then it doesn't matter which you use - just a matter of definition. If you choose $B$ the way I have, it's a false proposition. If you choose your definition, it's a true proposition. You'd have to change your assumptions if you changed your definition, but the logic would work out analogously.
 
Re: logic

Ackbach said:
Let $A$ be the statement that $2<0$
This should say, $2 > 0$.

solakis said:
why should you not put :

$\neg B$ for $3+2=7$ since $2+3=7$ is false
One has the right to introduce any notation. Abbreviating some expression by a variable is not a logical step; it does not change a problem in any essential way,

The premises in the OP are true, say, on integers, and the conclusion is not. So the conclusion cannot be proved in any formal system that is sound with respect to integers. (Regular logic is sound with respect to all models.)
 
Re: logic

Evgeny.Makarov said:
This should say, $2 > 0$.

Thank you! I've corrected that.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K