Logical Proof: Theorem (Truths of Logic) A iff ~~A

Click For Summary
The discussion centers on proving the theorem "A iff ~~A" without using double negation. The initial approach involves breaking down the statement into its equivalent forms and using indirect proofs to derive the implications. An alternative method is suggested, utilizing direct proof techniques and the law of excluded middle to demonstrate the validity of the implications. Participants agree that while the proof appears correct, it is essential to clarify the limitations of the theorem's general applicability. Overall, the conversation emphasizes the logical intricacies involved in proving the theorem.
VeraMason
Messages
1
Reaction score
0
Homework Statement
Prove that the following sentences are theorems (Truths of Logic):
A iff ~~A *Do not use Double Negation*
Relevant Equations
NA
My thought was to break up the sentence into its equivalent form: (A ->~~A) & (~~A -> A)
From there I assumed the premise of both sides to use indirect proofs, so:
1. ~(A -> ~~A) AP
2. ~(~A or ~~A) 1 Implication
3. ~~A & ~~~A 2 DeMorgan's
4. A -> ~~A 1-3 Indirect Proof
5. ~(~~A -> A) AP
6. ~(~~~A or A) 5 Implication
7. ~~~~A & ~A 6 DeMorgan's
8. ~~A -> A 5-7 Indirect Proof
9. (A ->~~A) & (~~A -> A) 4,8 Conjunction
10. A iff ~~A 9 EquivalenceTo me, this looks like it would be correct. Obviously, lines 3 and 7 would look a lot cleaner if I was allowed to use double negation, but in my mind, it shouldn't matter since both lines are a contradiction that essentially says: A & ~A.
Is this correct?
 
Physics news on Phys.org
VeraMason said:
Homework Statement:: Prove that the following sentences are theorems (Truths of Logic):
A iff ~~A *Do not use Double Negation*
Relevant Equations:: NA

My thought was to break up the sentence into its equivalent form: (A ->~~A) & (~~A -> A)
From there I assumed the premise of both sides to use indirect proofs, so:
1. ~(A -> ~~A) AP
2. ~(~A or ~~A) 1 Implication
3. ~~A & ~~~A 2 DeMorgan's
4. A -> ~~A 1-3 Indirect Proof
5. ~(~~A -> A) AP
6. ~(~~~A or A) 5 Implication
7. ~~~~A & ~A 6 DeMorgan's
8. ~~A -> A 5-7 Indirect Proof
9. (A ->~~A) & (~~A -> A) 4,8 Conjunction
10. A iff ~~A 9 EquivalenceTo me, this looks like it would be correct. Obviously, lines 3 and 7 would look a lot cleaner if I was allowed to use double negation, but in my mind, it shouldn't matter since both lines are a contradiction that essentially says: A & ~A.
Is this correct?
It looks OK to me, but it seems that you could also do this as a direct proof.
Here's for the first part:
##A \Rightarrow \neg \neg A##
##\Leftrightarrow \neg A \vee \neg \neg A## ( implication is equivalent to a disjunction)
##\Leftrightarrow \neg (A \wedge \neg A)## (de Morgan)
##\Leftrightarrow \neg (\text F)## (A and ~A is false)
##\Leftrightarrow \text T## (negation of false is true)

All the steps are reversible, which makes the first implication true.
 
@VeraMason Since this statement is not true in general, you should also point out, where you are using the law of excluded middle.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...