- #1

CAF123

Gold Member

- 2,948

- 88

We can write $$ F_L = \sum_a x \int_x^1 \frac{dy}{y} C_{a,L}(y,Q) f_a (\frac{x}{y},Q) $$ and similarly for ##F_1## and ##F_2##:

$$ F_1 = \sum_a x \int_x^1 \frac{dy}{y} C_{a,1}(y,Q) f_a (\frac{x}{y},Q) $$

$$ F_2 = \sum_a x \int_x^1 \frac{dy}{y} C_{a,2}(y,Q) f_a (\frac{x}{y},Q) $$

Then ##F_L = F_2 - 2xF_1## means that also

$$F_L = \sum_a x \int_x^1 \frac{dy}{y} \left( C_{a,2}(y,Q) - 2x C_{a,1}(y,Q) \right) f_a (\frac{x}{y},Q). $$

Comparing this with above eqn for ##F_L## means that ##C_{a,L}## is not just a function of y and Q. Is it possible to extract the longitudinal coefficient function for ##F_L## from knowledge of the coefficient function for ##F_1## and ##F_2##?