I'm working with a cartestian system that has certain periodic properties I'd like to exploit with a new coordinate system, but I don't know one that would work. The trajectory of the state of the system is symmetric across non-adjacent squares (ie a checkerboard of sorts), so that [tex](x,y)[/tex] can always be contained in [tex][-a, a], [-b, b][/tex], if the following are true. Along y, the plane wraps up on itself at b, so that [tex](x,-b)=(x,b)[/tex]. For x, if the state travels beyond a, it goes back to -a, but y will also be shifted, so that [tex](a,y) = (-a,y+b)[/tex]. Note that this shift might also cause a jump in y from [tex](x,-b)=(x,b)[/tex].(adsbygoogle = window.adsbygoogle || []).push({});

So wrapping in y means I curl my cartesian into a cylinder, and the wrapping in x might change the cylinder into a torus, but it would have to be twisted somehow so that [tex](a,y) = (a,y+b) [/tex], which toroidal coordinates wouldn't allow(?). I'm not really sure what to search for. Suggestions?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Looking for a coordinate system

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**