MHB Looking for a recursion relation

  • Thread starter Thread starter topsquark
  • Start date Start date
  • Tags Tags
    Recursion Relation
AI Thread Summary
The discussion centers on a specific non-linear recursion relation, f(n + 1) = 2 - d(n)/f(n), where d(n) is arbitrary. The equation may lack a closed-form solution due to its non-linearity, leading to challenges in finding general conclusions. Alternative representations include a non-linear difference equation and a continued fraction approach. Participants agree that while a general solution is elusive, numerical methods could provide insights. The equation remains a complex and frustrating problem for those involved.
topsquark
Science Advisor
Homework Helper
Insights Author
MHB
Messages
2,020
Reaction score
843
I don't know how to do a search for information on a specific equation. It's [math]f(n + 1) = 2 - \dfrac{d(n)}{f(n)}[/math], where d(n) is more or less arbitrary. It came up in some work I've been doing and I can't seem to get anywhere with it. Being non-linear it may not even have a closed form solution. There are two other ways to look at it. It's a non-linear difference equation: [math]f \Delta f + f(f - 2) = d[/math] and it can also be considered as a continued fraction. (I'm going to be looking up that idea tonight.)

Any thoughts?

-Dan
 
Mathematics news on Phys.org
topsquark said:
Any thoughts?
Yes, I think that it is impossible to make any general conclusions as the answer depends completey on ## d(n) ##.
 
Yes, thank you. I have found (but not proven) that this equation cannot be solved in general. I haven't even found a general way to approach it. It is a very annoying little equation!

-Dan

Addendum: Well, I should say "does not have closed form solutions in general." We can always do it numerically.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
11
Views
2K
Replies
1
Views
2K
Replies
16
Views
3K
Replies
125
Views
19K
Replies
3
Views
2K
Replies
4
Views
1K
Back
Top