Loop-and-allied QG bibliography

  • Thread starter Thread starter marcus
  • Start date Start date
  • Tags Tags
    Bibliography
  • #1,751


brief mention, possibly of general interest:
http://arxiv.org/abs/1206.6296
Horava-Lifgarbagez theory as a Fermionic Aether in Ashtekar gravity
Stephon Alexander, Joao Magueijo, Antonino Marciano
(Submitted on 27 Jun 2012)
We show how Horava-Lifgarbagez (HL) theory appears naturally in the Ashtekar formulation of relativity if one postulates the existence of a fermionic field playing the role of aether. The spatial currents associated with this field must be switched off for the equivalence to work. Therefore the field supplies the preferred frame associated with breaking refoliation (time diffeomorphism) invariance, but obviously the symmetry is only spontaneously broken if the field is dynamic. When Dirac fermions couple to the gravitational field via the Ashtekar variables, the low energy limit of HL gravity, recast in the language of Ashtekar variables, naturally emerges (provided the spatial fermion current identically vanishes). HL gravity can therefore be interpreted as a time-like current, or a Fermi aether, that fills space-time, with the Immirzi parameter, a chiral fermionic coupling, and the fermionic charge density fixing the value of the parameter λ determining HL theory. This reinterpretation sheds light on some features of HL theory, namely its good convergence properties.
==excerpts from page 1 and 8==
It is interesting that the discreteness of space-time in Loop Quantum Gravity (LQG) also provides a natural UV regulator [3] and one is led to wonder if the finiteness in HL gravity is connected to the non-perturbative discreteness found in LQG. A way to begin analyzing this possible connection is to see if HL gravity can be reexpressed in terms of the Asthekar canonical variables which naturally lead to the the holonomy representation of LQG.
...
To summarize, Horava’s theory can be seen as a specific case of the covariant first-order gravity theory (Einstein-Cartan-Kibble-Holst). When the covariant theory is rewritten in Ashtekar variables, the imposition of the York-time yields the Horava theory with the Cotton tensor, in the presence of a fermion aether which breaks time-refoliation invariance.
==endquote==
 
Last edited:
  • Like
Likes Boro Petrovic
Physics news on Phys.org
  • #1,752


Sorry for my low-brow "input". I mostly camp here trying to figure as much as I can from you people's exchanges. Often with less result than I would wish for though, heh.

http://arxiv.org/abs/1206.6296
Stephon Alexander, Joao Magueijo, Antonino Marciano
Horava-Lifgarbagez theory as a Fermionic Aether in Ashtekar gravity


Ironic how the big man's efforts always find themselves enshrouded in some kind of aether. This time fermionic even!:smile:

http://arxiv.org/abs/1103.4192
Nikodem J. Poplawski
On the mass of the Universe born in a black hole

Since HL-Gravity seems to have the torsion Mr N. Poplawski is missing, should we anytime soon throw something in a black hole and see what we hit (Yes I know...) ? Or maybe someone else "somewhere" else already did that and we got pretty lucky?
 
  • #1,753


This thread is for archival only purpose. If you want to discuss anything, open another thread. Thank you.
 
  • #1,754


http://arxiv.org/abs/1206.6736
Consistency of holonomy-corrected scalar, vector and tensor perturbations in Loop Quantum Cosmology
Thomas Cailleteau, Aurelien Barrau, Julien Grain, Francesca Vidotto
(Submitted on 28 Jun 2012)
Loop Quantum Cosmology yields two kinds of quantum corrections to the effective equations of motion for cosmological perturbations. Here we focus on the holonomy kind and we study the problem of the closure of the resulting algebra of constraints. Up to now, tensor, vector and scalar perturbations were studied independently, leading to different algebras of constraints. The structures of the related algebras were imposed by the requirement of anomaly freedom. In this article we show that the algebra can be modified by a very simple quantum correction, holding for all types of perturbations. This demonstrates the consistency of the theory and shows that lessons from the study of scalar perturbations should be taken into account when studying tensor modes. The Mukhanov-Sasaki equations of motion are similarly modified by a simple term.
5 pages

brief mention, not Loop-and-allied QG but probably of general interest:
http://arxiv.org/abs/1206.6559
The quantum geometric limit
Seth Lloyd
(Submitted on 28 Jun 2012)
This letter analyzes the limits that quantum mechanics imposes on the accuracy to which spacetime geometry can be measured. By applying the fundamental physical bounds to measurement accuracy to ensembles of clocks and signals moving in curved spacetime -- e.g., the global positioning system -- I derive a covariant version of the quantum geometric limit: the total number of ticks of clocks and clicks of detectors that can be contained in a four volume of spacetime of radius r and temporal extent t is less than or equal to rt/π xP tP, where xP, tP are the Planck length and time. The quantum geometric limit bounds the number of events or `ops' that can take place in a four-volume of spacetime: each event is associated with a Planck-scale area. Conversely, I show that if each quantum event is associated with such an area, then Einstein's equations must hold. The quantum geometric limit is consistent with and complementary to the holographic bound which limits the number of bits that can exist within a spatial three-volume.
10 pages
 
Last edited:
  • #1,755


brief mention (not directly QG, but of general interest):
http://arxiv.org/abs/1206.7114
Origins of Mass
Frank Wilczek
(Submitted on 29 Jun 2012)
Newtonian mechanics posited mass as a primary quality of matter, incapable of further elucidation. We now see Newtonian mass as an emergent property. Most of the mass of standard matter, by far, arises dynamically, from back-reaction of the color gluon fields of quantum chromodynamics (QCD). The equations for massless particles support extra symmetries - specifically scale, chiral, and gauge symmetries. The consistency of the standard model relies on a high degree of underlying gauge and chiral symmetry, so the observed non-zero masses of many elementary particles (W and Z bosons, quarks, and leptons) requires spontaneous symmetry breaking. Superconductivity is a prototype for spontaneous symmetry breaking and for mass-generation, since photons acquire mass inside superconductors. A conceptually similar but more intricate form of all-pervasive (i.e. cosmic) superconductivity, in the context of the electroweak standard model, gives us a successful, economical account of W and Z boson masses. It also allows a phenomenologically successful, though profligate, accommodation of quark and lepton masses. The new cosmic superconductivity, when implemented in a straightforward, minimal way, suggests the existence of a remarkable new particle, the so-called Higgs particle. The mass of the Higgs particle itself is not explained in the theory, but appears as a free parameter. Earlier results suggested, and recent observations at the Large Hadron Collider (LHC) may indicate, the actual existence of the Higgs particle, with mass mH ≈ 125 GeV. In addition to consolidating our understanding of the origin of mass, a Higgs particle with mH ≈ 125 GeV could provide an important clue to the future, as it is consistent with expectations from supersymmetry.
33 pages, 6 figures. Invited review for the Central European Journal of Physics. This is the supplement to my 2011 Solvay Conference talk promised there. It is adapted from an invited talk given at the Atlanta APS meeting, April 2012.
 
Last edited:
  • #1,756


http://arxiv.org/abs/1207.0416
Some classes of renormalizable tensor models
Joseph Ben Geloun, Etera R. Livine
(Submitted on 2 Jul 2012)
We identify new families of renormalizable of tensor models from anterior renormalizable tensor models via a mapping capable of reducing or increasing the rank of the theory without having an effect on the renormalizability property. Mainly, the rank 3 tensor model as defined in [arXiv:1201.0176 [hep-th]], the Grosse-Wulkenhaar model in 4D and 2D generate three different classes of renormalizable models.
10 pages, 4 figures
[The application is to Group Field Theory (GFT) which is a close cousin of Loop gravity, hence included here.]

http://arxiv.org/abs/1207.0423
Singularity Avoidance of Charged Black Holes in Loop Quantum Gravity
Mojtaba Taslimi Tehrani, Hoshang Heydari
(Submitted on 2 Jul 2012)
Based on spherically symmetric reduction of loop quantum gravity, quantization of the portion interior to the horizon of a Reissner-Nordström black hole is studied. Classical phase space variables of all regions of such a black hole are calculated for the physical case M2> Q2. This calculation suggests a candidate for a classically unbounded function of which all divergent components of the curvature scalar are composed. The corresponding quantum operator is constructed and is shown explicitly to possesses a bounded operator. Comparison of the obtained result with the one for the Swcharzschild case shows that the upper bound of the curvature operator of a charged black hole reduces to that of Schwarzschild at the limit Q → 0. This local avoidance of singularity together with non-singular evolution equation indicates the role quantum geometry can play in treating classical singularity of such black holes.
14 pages. To appear in International Journal of Theoretical Physics
 
Last edited:
  • #1,757


http://arxiv.org/abs/1207.0671
Lorentz Symmetry in QFT on Quantum Bianchi I Space-Time
Andrea Dapor, Jerzy Lewandowski, Yaser Tavakoli
(Submitted on 3 Jul 2012)
We develop the quantum theory of a scalar field on LQC Bianchi I geometry. In particular, we focus on single modes of the field: the evolution equation is derived from the quantum scalar constraint, and it is shown that the same equation can be obtained from QFT on an "classical" effective geometry. We investigate the dependence of this effective space-time on the wavevector of the mode (which could in principle generate a deformation in local Lorentz-symmetry), focusing our attention on the dispersion relation. We prove that when we disregard backreaction no Lorentz-violation is present, despite the effective metric being different than the classical Bianchi I one. A preliminary analysis of the correction due to inclusion of backreaction is briefly discussed in the context of Born-Oppenheimer approximation.
13 pages

http://arxiv.org/abs/1207.0637
New ground state for quantum gravity
Joao Magueijo, Laura Bethke
(Submitted on 3 Jul 2012)
In this paper we conjecture the existence of a new "ground" state in quantum gravity, supplying a wave function for the inflationary Universe. We present its explicit perturbative expression in the connection representation, exhibiting the associated inner product. The state is chiral, dependent on the Immirzi parameter, and is the vacuum of a second quantized theory of graviton particles. We identify the physical and unphysical Hilbert sub-spaces. We then contrast this state with the perturbed Kodama state and explain why the latter can never describe gravitons in a de Sitter background. Instead, it describes self-dual excitations, which are composites of the positive frequencies of the right-handed graviton and the negative frequencies of the left-handed graviton. These excitations are shown to be unphysical under the inner product we have identified. Our rejection of the Kodama state has a moral tale to it: the semi-classical limit of quantum gravity can be the wrong path for making contact with reality (which may sometimes be perturbative but nonetheless fully quantum). Our results point towards a non-perturbative extension, and we present some conjectures on the nature of this hypothetical state.

http://arxiv.org/abs/1207.0505
Emergent perspective of Gravity and Dark Energy
T. Padmanabhan
(Submitted on 2 Jul 2012)
There is sufficient amount of internal evidence in the nature of gravitational theories to indicate that gravity is an emergent phenomenon like, e.g, elasticity. Such an emergent nature is most apparent in the structure of gravitational dynamics. It is, however, possible to go beyond the field equations and study the space itself as emergent in a well-defined manner in (and possibly only in) the context of cosmology. In the first part of this review, I describe various pieces of evidence which show that gravitational field equations are emergent. In the second part, I describe a novel way of studying cosmology in which I interpret the expansion of the universe as equivalent to the emergence of space itself. In such an approach, the dynamics evolves towards a state of holographic equipartition, characterized by the equality of number of bulk and surface degrees of freedom in a region bounded by the Hubble radius. This principle correctly reproduces the standard evolution of a Friedmann universe. Further, (a) it demands the existence of an early inflationary phase as well as late time acceleration for its successful implementation and (b) allows us to link the value of late time cosmological constant to the e-folding factor during inflation.
38 pages; 5 figures

brief mention:
http://arxiv.org/abs/1207.0670
Scale hierarchy in Horava-Lifgarbagez gravity: a strong constraint from synchrotron radiation in the Crab nebula
Stefano Liberati, Luca Maccione, Thomas P. Sotiriou
(Submitted on 3 Jul 2012)
4 pages. 2 figures.
 
Last edited:
  • #1,758


brief mention, Loop-gravity-related (see references) and of general interest:
http://arxiv.org/abs/1207.1002
Quantum superpositions of the speed of light
Sabine Hossenfelder
(Submitted on 4 Jul 2012)
While it has often been proposed that, fundamentally, Lorentz-invariance is not respected in a quantum theory of gravity, it has been difficult to reconcile deviations from Lorentz-invariance with quantum field theory. The most commonly used mechanisms either break Lorentz-invariance explicitly or deform it at high energies. However, the former option is very tightly constrained by experiment already, the latter generically leads to problems with locality. We show here that there exists a third way to integrate deviations from Lorentz-invariance into quantum field theory that circumvents the problems of the other approaches. The way this is achieved is an extension of the standard model in which photons can have different speeds without singling out a preferred restframe, but only as long as they are in a quantum superposition. Once a measurement has been made, observables are subject to the laws of special relativity, and the process of measurement introduces a preferred frame. The speed of light can take on different values, both superluminal and subluminal (with respect to the usual value of the speed of light), without the need for Lorentz-invariance violating operators and without tachyons. We briefly discuss the relation to deformations of special relativity and phenomenological consequences.
9 pages, 1 figure
[my comment: this paper was the subject of a talk by the author at the MG13 conference 2-6 July.
http://ntsrvg9-5.icra.it/mg13/FMPro...&-max=1200&-recid=35256&-token.0=19&-findall=
How to beat a cosmic speeding ticket
In this talk I will argue it is possible that, within a theory of quantum gravity, special relativity is modified so as to allow for superluminal information exchange. This is possible without inducing higher order operators coupling to a preferred frame, and without causing problems with locality or causality.]

http://arxiv.org/abs/1207.0887
Energy on black hole spacetimes
Alejandro Corichi
(Submitted on 4 Jul 2012)
We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.
7 pages
[my comment: contrasting perspective on definitions in refs. 4 and 5, arXiv:1110.4055 and arXiv:1204.5122]
 
Last edited:
  • #1,759


I guess advances in thermodynamics are relevant to QG because of Hawking, Jacobson, Padmanabhan etc.

http://arxiv.org/abs/1207.1026
Stochastic thermodynamics for inhomogeneous media
Matteo Smerlak
(Submitted on 4 Jul 2012)
A unifying framework for the thermodynamics of fluctuating systems with Fokker-Planck dynamics has been developed by Seifert and others using the notion of stochastic entropy. Here we consider the extension of this formalism to the case of inhomogeneous media, where the diffusivity is state-dependent (multiplicative noise) and the usual fluctuation theorems can be violated. We introduce to this effect the concept of "relative stochastic entropy", and use it to generalize (i) the maximum-entropy principle for the Gibbs canonical ensemble, (ii) the second law of thermodynamics and (iii) Seifert's integral fluctuation theorems. Our "relative stochastic thermodynamics" can be used e.g. to describe the stochastic motion of colloidal particles dragged in viscous fluids with space-dependent viscosity and/or temperature.
 
  • #1,760


Not directly related, but food for thought !

An essay by Pullin, and Gambini
http://fqxi.org/data/essay-contest-files/Pullin_essay.pdf


http://arxiv.org/abs/1207.1635
Time in quantum gravity
Nick Huggett, Tiziana Vistarini, Christian Wuthrich
(Submitted on 3 Jul 2012)
Quantum gravity--the marriage of quantum physics with general relativity--is bound to contain deep and important lessons for the nature of physical time. Some of these lessons shall be canvassed here, particularly as they arise from quantum general relativity and string theory and related approaches. Of particular interest is the question of which of the intuitive aspects of time will turn out to be fundamental, and which 'emergent' in some sense.

http://arxiv.org/abs/1207.1568
The structure of causal sets
Christian Wuthrich
(Submitted on 6 Jul 2012)
More often than not, recently popular structuralist interpretations of physical theories leave the central concept of a structure insufficiently precisified. The incipient causal sets approach to quantum gravity offers a paradigmatic case of a physical theory predestined to be interpreted in structuralist terms. It is shown how employing structuralism lends itself to a natural interpretation of the physical meaning of causal sets theory. Conversely, the conceptually exceptionally clear case of causal sets is used as a foil to illustrate how a mathematically informed rigorous conceptualization of structure serves to identify structures in physical theories. Furthermore, a number of technical issues infesting structuralist interpretations of physical theories such as difficulties with grounding the identity of the places of highly symmetrical physical structures in their relational profile and what may resolve these difficulties can be vividly illustrated with causal sets.
 
  • #1,761


http://arxiv.org/abs/1207.2504

Challenges for Emergent Gravity

S. Carlip
Comments: 18 pages
Subjects: General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Theory (hep-th)
The idea of gravity as an "emergent" phenomenon has gained popularity in recent years. I discuss some of the obstacles that any such model must overcome in order to agree with the observational underpinnings of general relativity.

http://arxiv.org/abs/1207.2509

Gravity's weight on worldline fuzziness

Giovanni Amelino-Camelia, Valerio Astuti, Giacomo Rosati
Comments: 8 pages
Subjects: General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Theory (hep-th)
We investigate a connection between recent results in 3D quantum gravity, providing an effective noncommutative-spacetime description, and some earlier heuristic descriptions of a quantum-gravity contribution to the fuzziness of the worldlines of particles. We show that 3D-gravity-inspired spacetime noncommutativity reflects some of the features suggested by previous heuristic arguments. Most notably, gravity-induced worldline fuzziness, while irrelevantly small on terrestrial scales, could be observably large for propagation of particles over cosmological distances.
 
  • #1,762


http://arxiv.org/abs/1207.2585
Spherically symmetric Einstein-Maxwell theory and loop quantum gravity corrections
Rakesh Tibrewala
(Submitted on 11 Jul 2012)
Effects of inverse triad corrections and (point) holonomy corrections, occurring in loop quantum gravity, are considered on the properties of Reissner-Nordstrom black holes. Version of inverse triad corrections with unmodified constraint algebra reveal the possibility of occurence of three horizons (over a finite range of mass) and also show a mass threshold beyond which the inner horizon disappears. For the version with modified constraint algebra, coordinate transformations are no longer a good symmetry. The covariance property of spacetime is regained by using a quantum notion of mapping from phase space to spacetime. The resulting quantum effects in both versions of these corrections can be associated with renormalization of either mass, charge or wave function. In neither version is the Newton's constant renormalized. (Point) Holonomy corrections are shown to preclude undeformed version of constraint algebra as also a static solution, though time independent solutions exist. Possible reason for difficulty in constructing a covariant metric for these corrections is highlighted. Furthermore, the deformed algebra with holonomy corrections is shown to imply signature change.
36 pages, 9 figures

http://arxiv.org/abs/1207.2323
Modified constraint algebra in loop quantum gravity and spacetime interpretation
Rakesh Tibrewala
(Submitted on 10 Jul 2012)
Classically the constraint algebra of general relativity, which generates gauge transformations, is equivalent to spacetime covariance. In LQG, inverse triad corrections lead to an effective Hamiltonian constraint which can lead to a modified constraint algebra. We show, using example of spherically symmetric spacetimes, that a modified constraint algebra does not correspond to spacetime coordinate transformation. In such a scenario the notion of black hole horizon, which is based on spacetime notions, also needs to be reconsidered. A possible modification to the classical trapping horizon condition leading to consistent results is suggested. In the case where the constraint algebra is not modified a spacetime picture is valid and one finds mass threshold for black holes and small corrections to Hawking temperature.
6 pages. Prepared for ICGC2011, Goa (India) proceedings
 
  • #1,763


Relevant to LQG black hole study but also of general interest:
http://arxiv.org/abs/1207.3123
Black Holes: Complementarity or Firewalls?
Ahmed Almheiri, Donald Marolf, Joseph Polchinski, James Sully
(Submitted on 13 Jul 2012)
We argue that the following three statements cannot all be true: (i) Hawking radiation is in a pure state, (ii) the information carried by the radiation is emitted from the region near the horizon, with low energy effective field theory valid beyond some microscopic distance from the horizon, and (iii) the infalling observer encounters nothing unusual at the horizon. Perhaps the most conservative resolution is that the infalling observer burns up at the horizon. Alternatives would seem to require novel dynamics that nevertheless cause notable violations of semiclassical physics at macroscopic distances from the horizon.
19 pages, 1 figure
 
  • #1,764


http://arxiv.org/abs/1207.4090

Complementarity And Firewalls

Leonard Susskind
(Submitted on 17 Jul 2012)
Almheiri, Marolf, Polchinski, and Sully, recently reported a remarkable and very surprising phenomenon involving old black holes. The authors argue that after a black hole has radiated more than half its initial entropy, the horizon is replaced by a "firewall" at which infalling observers burn up, in apparent violation of one of the postulates of black hole complementarity. In this note I will give a different interpretation of the firewall phenomenon in which the properties of the horizon are conventional, but the dynamics of the singularity are strongly modified. In this formulation the postulates of complementarity are left intact. But the reader is nevertheless warned: black holes could be more dangerous than you thought.

http://arxiv.org/abs/1207.4059

Black Holes as Critical Point of Quantum Phase Transition

Gia Dvali, Cesar Gomez
(Submitted on 17 Jul 2012)
We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.
 
  • #1,765


http://arxiv.org/abs/1207.4353
Inflation from non-minimally coupled scalar field in loop quantum cosmology
Michal Artymowski, Andrea Dapor, Tomasz Pawlowski
(Submitted on 18 Jul 2012)
The FRW model with non-minimally coupled massive scalar field has been investigated in LQC framework. Considered form of the potential and coupling allows applications to Higgs driven inflation. The resulting dynamics qualitatively modifies the standard bounce paradigm in LQC in two ways: (i) the bounce point is no longer marked by critical matter energy density, (ii) the Planck scale physics features the "mexican hat" trajectory with two consecutive bounces and rapid expansion and recollapse between them. Furthermore, for physically viable coupling strength and initial data the subsequent inflation exceeds 60 e-foldings.
14 pages, 5 figures

http://arxiv.org/abs/1207.4473
Quantum mechanics in fractional and other anomalous spacetimes
Gianluca Calcagni, Giuseppe Nardelli, Marco Scalisi
(Submitted on 18 Jul 2012)
We formulate quantum mechanics in spacetimes with real-order fractional geometry and more general factorizable measures. In spacetimes where coordinates and momenta span the whole real line, Heisenberg's principle is proven and the wave-functions minimizing the uncertainty are found. In spite of the fact that ordinary time and spatial translations are broken and the dynamics is not unitary, the theory is in one-to-one correspondence with a unitary one, thus allowing us to employ standard tools of analysis. These features are illustrated in the examples of the free particle and the harmonic oscillator. While fractional (and the more general anomalous-spacetime) free models are formally indistinguishable from ordinary ones at the classical level, at the quantum level they differ both in the Hilbert space and for a topological term fixing the classical action in the path integral formulation. Thus, all non-unitarity in fractional quantum dynamics is encoded in a contribution depending only on the initial and final state.
32 pages, 1 figure
 
Last edited:
  • #1,766


http://arxiv.org/abs/1207.4657
Signature change in loop quantum cosmology
Jakub Mielczarek
(Submitted on 19 Jul 2012)
The Wick rotation is commonly considered only as an useful computational trick. However, as it was suggested by Hartle and Hawking already in early eighties, Wick rotation may gain physical meaning at the Planck epoch. While such possibility is conceptually interesting, leading to no-boundary proposal, mechanism behind the signature change remains mysterious. We show that the signature change anticipated by Hartle and Hawking naturally appear in loop quantum cosmology. Theory of cosmological perturbations with the effects of quantum holonomies is discussed. It was shown by Cailleteau \textit{et al.} (Class. Quant. Grav. {\bf 29} (2012) 095010) that this theory can be uniquely formulated in the anomaly-free manner. The obtained algebra of effective constraints turns out to be modified such that the metric signature is changing from Lorentzian in low curvature regime to Euclidean in high curvature regime. Implications of this phenomenon on propagation of cosmological perturbations are discussed and corrections to inflationary power spectra of scalar and tensor perturbations are derived. Possible relations with other approaches to quantum gravity are outlined. We also propose an intuitive explanation of the observed signature change using analogy with spontaneous symmetry breaking in "wired" metamaterials.

http://arxiv.org/abs/1207.4503
Spontaneous Dimensional Reduction?
S. Carlip
(Submitted on 18 Jul 2012)
Over the past few years, evidence has begun to accumulate suggesting that spacetime may undergo a "spontaneous dimensional reduction" to two dimensions near the Planck scale. I review some of this evidence, and discuss the (still very speculative) proposal that the underlying mechanism may be related to short-distance focusing of light rays by quantum fluctuations

http://arxiv.org/abs/1207.4603
Towards superconformal and quasi-modular representation of exotic smooth R^4 from superstring theory II
Torsten Asselmeyer-Maluga, Jerzy Król
(Submitted on 19 Jul 2012)
This is the second part of the work where quasi-modular forms emerge from small exotic smooth $\mathbb{R}^4$'s grouped in a fixed radial family. SU(2) Seiberg-Witten theory when formulated on exotic $\mathbb{R}^4$ from the radial family, in special foliated topological limit can be described as SU(2) Seiberg-Witten theory on flat standard $\mathbb{R}^4$ with the gravitational corrections derived from coupling to ${\cal N}=2$ supergravity.
Formally, quasi-modular expressions which follow the Connes-Moscovici construction of the universal Godbillon-Vey class of the codimension-1 foliation, are related to topological correlation functions of superstring theory compactified on special Callabi-Yau manifolds. These string correlation functions, in turn, generate Seiberg-Witten prepotential and the couplings of Seiberg-Witten theory to ${\cal N}=2$ supergravity sector. Exotic 4-spaces are conjectured to serve as a link between supersymmetric and non-supersymmetric Yang-Mills theories in dimension 4.

http://arxiv.org/abs/1207.4602
Towards superconformal and quasi-modular representation of exotic smooth R^4 from superstring theory I
Torsten Asselmeyer-Maluga, Jerzy Król
(Submitted on 19 Jul 2012)
We show that superconformal ${\cal N}=4,2$ algebras are well-suited to represent some invariant constructions characterizing exotic $\mathbb{R}^4$ relative to a given radial family. We examine the case of ${\cal N}=4, \hat{c}=4$ (at $r=1$ level) superconformal algebra which is realized on flat $\mathbb{R}^4$ and curved $S^3\times \mathbb{R}$. While the first realization corresponds naturally to standard smooth $\mathbb{R}^4$ the second describes the algebraic end of some small exotic smooth $\mathbb{R}^4$'s from the radial family of DeMichelis-Freedman and represents the linear dilaton background $SU(2)_k\times \mathbb{R}_Q$ of superstring theory.
From the modular properties of the characters of the algebras one derives Witten-Reshetikhin-Turaev and Chern-Simons invariants of homology 3-spheres. These invariants are represented rather by false, quasi-modular, Ramanujan mock-type functions. Given the homology 3-spheres one determines exotic smooth structures of Freedman on $S^3\times \mathbb{R}$. In this way the fake ends are related to the SCA ${\cal N}=4$ characters.
The case of the ends of small exotic $\mathbb{R}^4$'s is more complicated. One estimates the complexity of exotic $\mathbb{R}^4$ by the minimal complexity of some separating from the infinity 3-dimensional submanifold. These separating manifolds can be chosen, in some exotic $\mathbb{R}^4$'s, to be homology 3-spheres. The invariants of such homology 3-spheres are, again, obtained from the characters of SCA, ${\cal N}=4$.
 
  • #1,767


http://arxiv.org/abs/1207.4596
The Construction of Spin Foam Vertex Amplitudes
Eugenio Bianchi, Frank Hellmann
(Submitted on 19 Jul 2012)
Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. They fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4 dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barret and Crane and Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
22 Pages. 1 Figure. Invited review for SIGMA Special Issue "Loop Quantum Gravity and Cosmology"

Link to the SIGMA Special Issue TOC (still in progress):
http://www.emis.de/journals/SIGMA/LQGC.html

http://arxiv.org/abs/1207.4689
On the Nature of Black Holes in Loop Quantum Gravity
Christian Röken
(Submitted on 19 Jul 2012)
A genuine notion of black holes can only be obtained in the fundamental framework of quantum gravity resolving the curvature singularities and giving an account of the statistical mechanical, microscopic degrees of freedom able to explain the black hole thermodynamic properties. As for all quantum systems, a quantum realization of black holes requires an operator algebra of the fundamental observables of the theory which is introduced in this study based on aspects of loop quantum gravity. From the eigenvalue spectra of the operators for the black hole area, charge and angular momentum, it is demonstrated that a more general bound on the extensive parameters, other than the relation arising in general relativity, holds, implying that the extremal black hole state can merely be reached asymptotically, while the lowest eigenvalue of the black hole mass spectrum indicates, on the one hand, a Planck scale cutoff ending the final phase of the evaporation process with a massive, ultra-dense, extremely hot remnant and, on the other hand, gives a rough estimate of the numerical value of the Immirzi parameter. This analysis provides an approximative description of the dynamics and the nature of quantum black holes.
15 pages
 
Last edited:
  • #1,768


http://arxiv.org/abs/1207.5156
Divergences and Orientation in Spinfoams
Marios Christodoulou, Miklos Långvik, Aldo Riello, Christian Röken, Carlo Rovelli
(Submitted on 21 Jul 2012)
We suggest that large radiative corrections appearing in the spinfoam framework might be tied to the implicit sum over orientations. Specifically, we show that in a suitably simplified context the characteristic "spike" divergence of the Ponzano-Regge model disappears when restricting the theory to just one of the two orientations appearing in the asymptotic limit of the vertex amplitude.
10 pages, 5 figures

not Loop QG related but possibly of some general interest:
http://arxiv.org/abs/1207.5501
SUGRA Grand Unification, LHC and Dark Matter
Pran Nath
(Submitted on 23 Jul 2012)
A brief review is given of recent developments related to the Higgs signal and its implications for supersymmetry in the supergravity grand unification framework. The Higgs data indicates that the allowed parameter space largely lies on focal curves and focal surfaces of the Hyperbolic Branch of radiative breaking of the electroweak symmetry where TeV size scalars naturally arise. The high mass of the Higgs leads to a more precise prediction for the allowed range of the spin independent neutralino -proton cross section which is encouraging for the detection of dark matter in future experiments with greater sensitivity. Also discussed is the status of grand unification and a natural solution to breaking the GUT group at one scale and resolving the doublet-triplet problem. It is shown that the cosmic coincidence can be compatible within a supersymmetric framework in a muticomponent dark matter picture with one component charged under $B-L$ while the other component is the conventional supersymmetric dark matter candidate, the neutralino.
11 pages. Based on Talk at Pascos2012, Merida, Mexico, Jun 3-8, 2012
 
Last edited:
  • #1,769


http://arxiv.org/abs/1207.5601
Dynamical eigenfunctions and critical density in loop quantum cosmology
David A. Craig
(Submitted on 24 Jul 2012)
We offer a new, physically transparent argument for the existence of the critical, universal maximum matter density in loop quantum cosmology for the case of a flat Friedmann-Lemaitre-Robertson-Walker cosmology with scalar matter. The argument is based on the existence of a sharp exponential ultraviolet cutoff in momentum space on the eigenfunctions of the quantum cosmological dynamical evolution operator (the gravitational part of the Hamiltonian constraint), attributable to the fundamental discreteness of spatial volume in loop quantum cosmology. The existence of the cutoff is proved directly from recently found exact solutions for the eigenfunctions for this model. As a consequence, the operators corresponding to the momentum of the scalar field and the spatial volume approximately commute. The ultraviolet cutoff then implies that the scalar momentum, though not a bounded operator, is in effect bounded on subspaces of constant volume, leading to the upper bound on the expectation value of the matter density. The maximum matter density is independent of the quantum state essentially because of the linear scaling of the cutoff with volume. These heuristic arguments are supplemented by a new proof in the volume representation of the existence of the maximum matter density. The techniques employed to demonstrate the existence of the cutoff also allow us to extract the large volume limit of the exact eigenfunctions, confirming earlier numerical and analytical work showing the eigenfunctions approach superpositions of the eigenfunctions of the Wheeler-DeWitt quantization of the same model. We argue that generic (not just semiclassical) quantum states approach symmetric superpositions of expanding and contracting universes.
23 pages, 8 figures

http://arxiv.org/abs/1207.5730
Self-adjointness in the Hamiltonians of deparameterized totally constrained theories: a model
Rodolfo Gambini, Jorge Pullin
(Submitted on 24 Jul 2012)
Several proposals to deal with the dynamics of general relativity involve gauge fixings or the introduction matter fields in terms of which the theory is deparameterized. The resulting theories have true Hamiltonians for their evolution that usually involve square roots, and this poses certain challenges for their implementation as self-adjoint quantum operators. We show in the context of a simple model of totally constrained theory that one can introduce related, well defined operators that reproduce semiclassically the same physics as the original ones, at least for states peaked in the regions of phase space where their associated classical quantities are well defined.
5 pages
 
  • #1,770


http://arxiv.org/abs/1207.6348
The twistorial structure of loop-gravity transition amplitudes
Simone Speziale, Wolfgang M. Wieland
(Submitted on 26 Jul 2012)
The spin foam formalism provides transition amplitudes for loop quantum gravity. Important aspects of the dynamics are understood, but many open questions are pressing on. In this paper we address some of them using a twistorial description, which brings new light on both classical and quantum aspects of the theory. At the classical level, we clarify the covariant properties of the discrete geometries involved, and the role of the simplicity constraints in leading to SU(2) Ashtekar-Barbero variables. We identify areas and Lorentzian dihedral angles in twistor space, and show that they form a canonical pair. The primary simplicity constraints are solved by simple twistors, parametrized by SU(2) spinors and the dihedral angles. We construct an SU(2) holonomy and prove it to correspond to the Ashtekar-Barbero connection. We argue that the role of secondary constraints is to provide a non trivial embedding of the cotangent bundle of SU(2) in the space of simple twistors. At the quantum level, a Schroedinger representation leads to a spinorial version of simple projected spin networks, where the argument of the wave functions is a spinor instead of a group element. We rewrite the Liouville measure on the cotangent bundle of SL(2,C) as an integral in twistor space. Using these tools, we show that the Engle-Pereira-Rovelli-Livine transition amplitudes can be derived from a path integral in twistor space. We construct a curvature tensor, show that it carries torsion off-shell, and that its Riemann part is of Petrov type D. Finally, we make contact between the semiclassical asymptotic behaviour of the model and our construction, clarifying the relation of the Regge geometries with the original phase space.
39 pages

perhaps of some general interest:
http://arxiv.org/abs/1207.6243
Complementarity, not Firewalls
Daniel Harlow
(Submitted on 26 Jul 2012)
In this note I argue that a strict interpretation of complementarity is possible which evades the need for the "firewalls" recently proposed by Almheiri, Marolf, Polchinski, and Sully to burn up observers falling into black hole horizons. In particular I argue that it is consistent for an infalling observer to fall through an "old" black hole horizon without burning up, without this observer or any other seeing information loss or a violation of low energy effective field theory away from a stretched horizon. The reason that AMPS find the opposite conclusion is because they attempt to use low energy physics to translate between the quantum mechanics of different observers rather than to describe the experiments of only a single observer. The validity of this position is tested by two concrete calculations.
11 pages, 3 figures

http://arxiv.org/abs/1207.6370
A no-go theorem for slowly rotating black holes in Horava-Lifgarbagez gravity
Enrico Barausse, Thomas P. Sotiriou
(Submitted on 26 Jul 2012)
We consider slowly rotating, stationary, axisymmetric black holes in the infrared limit of Horava-Lifgarbagez gravity. We show that such solutions do not exist, provided that they are regular everywhere apart from the central singularity, and we comment on the implications for the viability of the theory.
5 pages, 1 figure
 
Last edited:
  • #1,771


http://arxiv.org/abs/1207.6653

Inflation with Negative Λ

James B. Hartle. S. W. Hawking, Thomas Hertog
(Submitted on 27 Jul 2012)
The evolution of the universe is determined by its quantum state. The wave function of the universe obeys the constraints of general relativity and in particular the Wheeler-DeWitt equation. For non-zero \Lambda, we show that the complexified solutions of the Wheeler-DeWitt equation at large volume have two regions in which geometries are asymptotically real. In one the histories are Euclidean asymptotically anti-de Sitter, in the other they are Lorentzian asymptotically de Sitter. We illustrate this by an explicit calculation in a homogeneous isotropic minisuperspace model with negative \Lambda, and a scalar moving in a negative potential. It is shown that the wave function in this theory can predict an ensemble of inflationary universes that asymptote to de Sitter space.
 
  • #1,772


http://arxiv.org/abs/1207.6734
Renormalization of Tensorial Group Field Theories: Abelian U(1) Models in Four Dimensions
Sylvain Carrozza, Daniele Oriti, Vincent Rivasseau
(Submitted on 28 Jul 2012)
We tackle the issue of renormalizability for Tensorial Group Field Theories (TGFT) including gauge invariance conditions, with the rigorous tool of multi-scale analysis, to prepare the ground for applications to quantum gravity models. In the process, we define the appropriate generalization of some key QFT notions, including: connectedness, locality and contraction of (high) subgraphs. We also define a new notion of Wick ordering, corresponding to the subtraction of (maximal) melonic tadpoles. We then consider the simplest examples of dynamical 4-dimensional TGFT with gauge invariance conditions for the Abelian U(1) case. We prove that they are super-renormalizable for any polynomial interaction.
33 pages, 8 figures, 1 appendix
 
  • #1,773


http://arxiv.org/abs/1208.0031
On the physical mechanism underlying Asymptotic Safety

Andreas Nink, Martin Reuter
(Submitted on 31 Jul 2012)
We identify a simple physical mechanism which is at the heart of Asymptotic Safety in Quantum Einstein Gravity (QEG) according to all available effective average action-based investigations. Upon linearization the gravitational field equations give rise to an inverse propagator for metric fluctuations comprising two pieces: a covariant Laplacian and a curvature dependent potential term. By analogy with elementary magnetic systems they lead to, respectively, dia- and paramagnetic-type interactions of the metric fluctuations with the background gravitational field. We show that above 3 spacetime dimensions the gravitational antiscreening occurring in QEG is entirely due to a strong dominance of the ultralocal paramagnetic interactions over the diamagnetic ones that favor screening. (Below 3 dimensions both the dia- and paramagnetic effects support antiscreening.) The spacetimes of QEG are interpreted as a polarizable medium with a "paramagnetic" response to external perturbations, and similarities with the vacuum state of Yang-Mills theory are pointed out. As a by-product, we resolve a longstanding puzzle concerning the beta function of Newton's constant in 2+ε dimensional gravity.
52 pages, 8 figures

not QG but of general interest:
http://arxiv.org/abs/1207.7097
Numerical Relativity as a tool for studying the Early Universe
David Garrison
(Submitted on 30 Jul 2012)
Numerical simulations are becoming a more effective tool for conducting detailed investigations into the evolution of our universe. In this article, we show how the framework of numerical relativity can be used for studying cosmological models. The author is working to develop a large-scale simulation of the dynamical processes in the early universe. These take into account interactions of dark matter, scalar perturbations, gravitational waves, magnetic fields and a dynamic plasma. The code described in this report is a GRMHD code based on the Cactus framework and is structured to utilize one of several different differencing methods chosen at run-time. It is being developed and tested on the Texas Learning and Computation Center's Xanadu Cluster.
30 pages, 2 figures
 
  • #1,774


http://arxiv.org/abs/1208.0354
Laplacians on discrete and quantum geometries
Gianluca Calcagni, Daniele Oriti, Johannes Thürigen
(Submitted on 1 Aug 2012)
We extend discrete calculus to a bra-ket formalism for arbitrary (p-form) fields on discrete geometries, based on cellular complexes. We then provide a general definition of discrete Laplacian using both the primal cellular complex and its topological dual. The precise implementation of geometric volume factors is not unique and comparing the definition with a circumcentric and a barycentric dual we argue that the latter is, in general, more appropriate because it induces a Laplacian with more desirable properties. We give the expression of the discrete Laplacian in several different sets of geometric variables, suitable for computations in different quantum gravity formalisms. Furthermore, we investigate the possibility of transforming from position to momentum space for scalar fields, thus setting the stage for the calculation of heat kernel and spectral dimension in discrete quantum geometries.
1+35 pages, 2 figures
 
  • #1,775


Eyo Ita emailed me to correctly inform that we missed his paper related to LQG quantization, posted on July 30th:

http://arxiv.org/abs/1207.7263

Affine group representation formalism for four dimensional, Lorentzian, quantum gravity

Chou Ching-Yi, Eyo Ita, Chopin Soo
(Submitted on 30 Jul 2012)
The Hamiltonian constraint of 4-dimensional General Relativity is recast explicitly in terms of the Chern--Simons functional and the local volume operator. In conjunction with the algebraic quantization program, application of the affine quantization concept due to Klauder facilitates the construction of solutions to all of the the quantum constraints in the Ashtekar variables and their associated Hilbert space. A physical Hilbert space is constructed for Lorentzian signature gravity with nonzero cosmological constant in the form of unitary, irreducible representations of the affine group.
 
  • #1,776


http://arxiv.org/abs/1208.1030
Resilience of the Spectral Standard Model

Ali H. Chamseddine, Alain Connes
(Submitted on 5 Aug 2012)
We show that the inconsistency between the spectral Standard Model and the experimental value of the Higgs mass is resolved by the presence of a real scalar field strongly coupled to the Higgs field. This scalar field was already present in the spectral model and we wrongly neglected it in our previous computations. It was shown recently by several authors, independently of the spectral approach, that such a strongly coupled scalar field stabilizes the Standard Model up to unification scale in spite of the low value of the Higgs mass. In this letter we show that the noncommutative neutral singlet modifies substantially the RG analysis, invalidates our previous prediction of Higgs mass in the range 160--180 Gev, and restores the consistency of the noncommutative geometric model with the low Higgs mass.
 
Last edited:
  • #1,777


http://arxiv.org/abs/1208.1463
Loop quantum gravity as an effective theory
Martin Bojowald
(Submitted on 7 Aug 2012)
As a canonical and generally covariant gauge theory, loop quantum gravity requires special techniques to derive effective actions or equations. If the proper constructions are taken into account, the theory, in spite of considerable ambiguities at the dynamical level, allows for a meaningful phenomenology to be developed, by which it becomes falsifiable. The traditional problems plaguing canonical quantum-gravity theories, such as the anomaly issue or the problem of time, can be overcome or are irrelevant at the effective level, resulting in consistent means of physical evaluations. This contribution presents aspects of canonical equations and related notions of (deformed) space-time structures and discusses implications in loop quantum gravity, such as signature change at high density from holonomy corrections, and falsifiability thanks to inverse-triad corrections.
30 pages, lecture series at Sixth International School on Field Theory and Gravitation 2012 (Petropolis, Brazil)

http://arxiv.org/abs/1208.1502
A cosmological solution of Regge calculus
Adrian P. Gentle
(Submitted on 7 Aug 2012)
We revisit the Regge calculus model of the Kasner cosmology first considered by S. Lewis. One of the most highly symmetric applications of lattice gravity in the literature, Lewis' discrete model closely matched the degrees of freedom of the Kasner cosmology. As such, it was surprising that Lewis was unable to obtain the full set of Kasner-Einstein equations in the continuum limit. Indeed, an averaging procedure was required to ensure that the lattice equations were even consistent with the exact solution in this limit. We correct Lewis' calculations and show that the resulting Regge model converges quickly to the full set of Kasner-Einstein equations in the limit of very fine discretization. Numerical solutions to the discrete and continuous-time lattice equations are also considered.
12 pages, 3 figures

http://arxiv.org/abs/1208.1375
Structural Aspects Of Gravitational Dynamics And The Emergent Perspective Of Gravity
T. Padmanabhan
(Submitted on 7 Aug 2012)
I describe several conceptual aspects of a particular paradigm which treats the field equations of gravity as emergent. These aspects are related to the features of classical gravitational theories which defy explanation within the conventional perspective. The alternative interpretation throws light on these features and could provide better insights into possible description of quantum structure of spacetime. This review complements the discussion in arXiv:1207.0505, which describes space itself as emergent in the cosmological context.
29 pages. Updated version of talks given at: (a) Petropolis, Brazil, 2012 (b) Institute of Astrophysics, Paris, 2012 and (c) International Centre for Theoretical Sciences, Bangalore, 2012

brief mention:
http://arxiv.org/abs/1208.1428
Perturbative algebraic quantum field theory
Klaus Fredenhagen, Katarzyna Rejzner
(Submitted on 7 Aug 2012)
These notes are based on the course given by Klaus Fredenhagen at the Les Houches Winter School in Mathematical Physics (January 29 - February 3, 2012) and the course "QFT for mathematicians" given by Katarzyna Rejzner in Hamburg for the Research Training Group 1670 (February 6 -11, 2012). Both courses were meant as an introduction to modern approach to perturbative quantum field theory and are aimed both at mathematicians and physicists.
41 pages, 1 figure
 
Last edited:
  • #1,778


http://arxiv.org/abs/1208.1514
Combinatorial Dark Energy
Aaron Trout
(Submitted on 8 Aug 2012)
In this paper, we give a conceptual explanation of dark energy as a small negative residual scalar curvature present even in empty spacetime. This curvature ultimately results from postulating a discrete spacetime geometry, very closely related to that used in the dynamical triangulations approach to quantum gravity. In this model, there are no states which have total scalar curvature exactly zero. Moreover, numerical evidence in dimension three suggests that, at a fixed volume, the number of discrete-spacetime microstates strongly increases with decreasing curvature. Because of the resulting entropic force, any dynamics which push empty spacetime strongly toward zero scalar curvature would instead produce typically observed states with a small negative curvature. This provides a natural explanation for the empirically observed small positive value for the cosmological constant (Lambda is about 10^(-121) in Planck units.) In fact, we derive the very rough estimate Lambda=6x10^(-118) from a simple model containing only the two (highly-degenerate) quantum states with total scalar-curvature closest to zero.
20 pages, 2 tables
 
Last edited:
  • #1,779


http://arxiv.org/abs/1208.2228
Bohr-Sommerfeld Quantization of Space
Eugenio Bianchi, Hal M. Haggard
(Submitted on 10 Aug 2012)
We introduce semiclassical methods into the study of the volume spectrum in loop gravity. The classical system behind a 4-valent spinnetwork node is a Euclidean tetrahedron. We investigate the tetrahedral volume dynamics on phase space and apply Bohr-Sommerfeld quantization to find the volume spectrum. The analysis shows a remarkable quantitative agreement with the volume spectrum computed in loop gravity. Moreover, it provides new geometrical insights into the degeneracy of this spectrum and the maximum and minimum eigenvalues of the volume on intertwiner space.
32 pages, 10 figures

http://arxiv.org/abs/1208.2038
Fixed-Functionals of three-dimensional Quantum Einstein Gravity
Maximilian Demmel, Frank Saueressig, Omar Zanusso
(Submitted on 9 Aug 2012)
We study the non-perturbative renormalization group flow of f(R)-gravity in three-dimensional Asymptotically Safe Quantum Einstein Gravity. Within the conformally reduced approximation, we derive an exact partial differential equation governing the RG-scale dependence of the function f(R). This equation is shown to possesses two isolated and one continuous one-parameter family of scale-independent, regular solutions which constitute the natural generalization of RG fixed points to the realm of infinite-dimensional theory spaces. All solutions are bounded from below and give rise to positive definite kinetic terms. Moreover, they admit either one or two UV-relevant deformations, indicating that the corresponding UV-critical hypersurfaces remain finite dimensional despite the inclusion of an infinite number of coupling constants. The impact of our findings on the gravitational Asymptotic Safety program and its connection to new massive gravity is briefly discussed.
34 pages, 14 figures

of possible interest:
http://arxiv.org/abs/1208.2168
Emergent gravity in two dimensions
D. Sexty, C. Wetterich
(Submitted on 10 Aug 2012)
We explore models with emergent gravity and metric by means of numerical simulations. A particular type of two-dimensional non-linear sigma-model is regularized and discretized on a quadratic lattice. It is characterized by lattice diffeomorphism invariance which ensures in the continuum limit the symmetry of general coordinate transformations. We observe a collective order parameter with properties of a metric, showing Minkowski or euclidean signature. The correlation functions of the metric reveal an interesting long-distance behavior with power-like decay. This universal critical behavior occurs without tuning of parameters and thus constitutes an example of "self-tuned criticality" for this type of sigma-models. We also find a non-vanishing expectation value of a "zweibein" related to the "internal" degrees of freedom of the scalar field, again with long-range correlations. The metric is well described as a composite of the zweibein. A scalar condensate breaks euclidean rotation symmetry.
22 pages, 17 figures
 
Last edited:
  • #1,780


of possible general interest, though not QG-related:
http://arxiv.org/abs/1208.2660
A Numerical Simulation of Chern-Simons Inflation
Annie Preston, David Garrison, Stephon Alexander
(Submitted on 13 Aug 2012)
In this work, we present results of numerical simulations of the Chern-Simons Inflation Model proposed by Alexander, Marciano and Spergel. According to this model, inflation begins with a fermion condensate interacting with a gauge field. Crucial to the success of this mechanism is the assumption that the Chern-Simons interaction would drive energy from the initial random spectrum into a narrow band of frequencies at superhorizon scales. In this work we numerically confirm this expectation. These gauge fields, when combined with the Friedmann equations, were broken into a system of hyperbolic equations and numerically simulated with a novel relativistic MHD code. We show that the amplification of horizon sized gauge fields produces the conditions to cause cosmological inflation and that the onset of inflation are robust against certain fine tunings in the initial conditions.
10 pages, 2 figures

http://arxiv.org/abs/1208.2611
Space time and the passage of time
George F. R. Ellis, Rituparno Goswami
(Submitted on 13 Aug 2012)
This paper examines the various arguments that have been put forward suggesting either that time does not exist, or that it exists but its flow is not real. I argue that (i) time both exists and flows; (ii) an Evolving Block Universe (`EBU') model of spacetime adequately captures this feature, emphasizing the key differences between the past, present, and future; (iii) the associated surfaces of constant time are uniquely geometrically and physically determined in any realistic spacetime model based in General Relativity Theory; (iv) such a model is needed in order to capture the essential aspects of what is happening in circumstances where initial data does not uniquely determine the evolution of spacetime structure because quantum uncertainty plays a key role in that development. Assuming that the functioning of the mind is based in the physical brain, evidence from the way that the mind apprehends the flow of time is prefers this evolving time model over those where there is no flow of time.
25 pages, 2 figures. For Springer Handbook of Spacetime.
 
Last edited:
  • #1,781


http://arxiv.org/abs/1208.3186

A Reasonable Ab Initio Cosmological Constant Without Holography

Aaron D. Trout
(Submitted on 15 Aug 2012)
We give a well-motivated explanation for the origin of dark energy, claiming that it arises from a small residual negative scalar-curvature present even in empty spacetime. The vacuum has this residual curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect in the well-known {\em dynamical triangulations} (DT) model for quantum gravity and the predicted cosmological constant $\Lambda$ agrees with observation.
We begin by almost completely characterizing the DT-model's vacuum energies in dimension three. Remarkably, the energy gap between states comes in increments of [\Delta\mathcal{A} =\frac{\ell}{8\mathcal{V}}] in natural units, where $\ell$ is the "Planck length" in the model and $\mathcal{V}$ is the volume of the universe. Then, using only vacua in the $N$ energy levels nearest zero, where $N$ is the universe's radius in units of $\ell$, we apply our model to the current co-moving spatial volume to get $|\Lambda| \approx 10^{-123}$.
This result comes with a rigorous proof and does not depend on any holographic principle or carefully tuned parameters. Our only unknown is the relative entropy of the low-energy states, which sets the sign of $\Lambda$. Numerical evidence strongly suggests that spacetime entropy in the DT-model is a decreasing function of scalar-curvature, so the model also predicts the correct sign for $\Lambda$.
 
  • #1,782


http://arxiv.org/abs/1208.3388
Holonomy Spin Foam Models: Definition and Coarse Graining
Benjamin Bahr, Bianca Dittrich, Frank Hellmann, Wojciech Kaminski
(Submitted on 16 Aug 2012)
We propose a new holonomy formulation for spin foams, which naturally extends the theory space of lattice gauge theories. This allows current spin foam models to be defined on arbitrary two-complexes as well as to generalize current spin foam models to arbitrary, in particular finite groups. The similarity with standard lattice gauge theories allows to apply standard coarse graining methods, which for finite groups can now be easily considered numerically. We will summarize other holonomy and spin network formulations of spin foams and group field theories and explain how the different representations arise through variable transformations in the partition function. A companion paper will provide a description of boundary Hilbert spaces as well as a canonical dynamic encoded in transfer operators.
36 pages, 12 figures

http://arxiv.org/abs/1208.3335
Quantum Hall Effect and Black Hole Entropy in Loop Quantum Gravity
Deepak Vaid
(Submitted on 16 Aug 2012)
In LQG, black hole horizons are described by 2+1 dimensional boundaries of a bulk 3+1 dimensional spacetime. The horizon is endowed with area by lines of gravitational flux which pierce the surface. As is well known, counting of the possible states associated with a given set of punctures allows us to recover the famous Bekenstein-Hawking area law according to which the entropy of a black hole is proportional to the area of the associated horizon SBH ∝ AHor. It is also known that the dynamics of the horizon degrees of freedom is described by the Chern-Simons action of a su(2) (or u(1) after a certain gauge fixing) valued gauge field Aμi. Recent numerical work which performs the state-counting for punctures, from first-principles, reveals a step-like structure in the entropy-area relation. We argue that both the presence of the Chern-Simons action and the step-like structure in the entropy-area curve are indicative of the fact that the effective theory which describes the dynamics of punctures on the horizon is that of the Quantum Hall Effect.
24 pages, 7 figures; comments welcome

brief mention, not QG but conceivably of interest:
http://arxiv.org/abs/1208.3373
The cosmology of the Fab-Four
Edmund J. Copeland, Antonio Padilla, Paul M. Saffin
(Submitted on 16 Aug 2012)
We have recently proposed a novel self tuning mechanism to alleviate the famous cosmological constant problem, based on the general scalar tensor theory proposed by Horndeski. The self-tuning model ends up consisting of four geometric terms in the action, with each term containing a free potential function of the scalar field; the four together being labeled as the Fab-Four. ...
22 pages, 6 figures
 
Last edited:
  • #1,783


general interest:
http://arxiv.org/abs/1208.3662
Astrophysical and cosmological probes of dark matter
Matts Roos
(Submitted on 17 Aug 2012)
Dark matter has been introduced to explain mass deficits noted at different astronomical scales, in galaxies, groups of galaxies, clusters, superclusters and even across the full horizon. Dark matter makes itself felt only through its gravitational effects. This review summarizes phenomenologically all the astrophysical and cosmological probes that have been used to give evidence for its existence.
39 pages, 24 figures. Accepted by J. of Modern Physics and will be released as Special Issue in September, 2012

http://arxiv.org/abs/1208.3841
Constraints on Chronologies
Alfred Shapere, Frank Wilczek
(Submitted on 19 Aug 2012)
The time ordering of two spacelike separated events is arbitrary, when all inertial frames are taken into account, but for three or more events it is not generally so. We determine the structure of possible time orderings, or chronologies, for multiple events in any number of dimensions, analytically and exhaustively for three events in four space-time dimensions, algorithmically in other cases. We also formulate an alternative criterion, based on convexity, for determining the allowed chronologies of a set of events. We show how the metric of a Lorentz invariant spacetime can be partially reconstructed from a knowledge of the chronologies it supports. Finally, we propose a different but related criterion for allowed chronologies in curved spacetimes.
22 pages, 4 figures

brief mention:
http://arxiv.org/abs/1208.3703
Quantum Geometry and Interferometry
Craig Hogan
(Submitted on 17 Aug 2012)
10 pages
 
Last edited:
  • #1,784


http://arxiv.org/abs/1112.1961
Spin Foams and Canonical Quantization
Authors: Sergei Alexandrov, Marc Geiller, Karim Noui
(Submitted on 8 Dec 2011 (v1), last revised 19 Aug 2012 (this version, v3))
Abstract: This review is devoted to the analysis of the mutual consistency of the spin foam and canonical loop quantizations in three and four spacetime dimensions. In the three-dimensional context, where the two approaches are in good agreement, we show how the canonical quantization \`a la Witten of Riemannian gravity with a positive cosmological constant is related to the Turaev-Viro spin foam model, and how the Ponzano-Regge amplitudes are related to the physical scalar product of Riemannian loop quantum gravity without cosmological constant. In the four-dimensional case, we recall a Lorentz-covariant formulation of loop quantum gravity using projected spin networks, compare it with the new spin foam models, and identify interesting relations and their pitfalls. Finally, we discuss the properties which a spin foam model is expected to possesses in order to be consistent with the canonical quantization, and suggest a new model illustrating these results.
 
  • #1,785


something different.

http://fqxi.org/data/essay-contest-files/AsselmeyerMalu_FQXIessay201_1.pdf
A chicken-and-egg problem: Which came first, the quantum state or spacetime? by Torsten Asselmeyer-Maluga
Essay Abstract
In this essay I will discuss the question: Is spacetime quantized, as in quantum geometry, or is it possible to derive the quantization procedure from the structure of spacetime? All proposals of quantum gravity try to quantize spacetime or derive it as an emergent phenomenon. In this essay, all major approaches are analyzed to find an alternative to a discrete structure on spacetime or to the emergence of spacetime. Here I will present the idea that spacetime defines the quantum state by using new developments in the differential topology of 3- and 4-manifolds. In particular the plethora of exotic smoothness structures in dimension 4 could be the corner stone of quantum gravity.
 
  • #1,786


http://arxiv.org/abs/1208.5023
Asymptotic safety, hypergeometric functions, and the Higgs mass in spectral action models
Christopher Estrada, Matilde Marcolli
(Submitted on 24 Aug 2012)
We study the renormalization group flow for the Higgs self coupling in the presence of gravitational correction terms. We show that the resulting equation is equivalent to a singular linear ODE, which has explicit solutions in terms of hypergeometric functions. We discuss the implications of this model with gravitational corrections on the Higgs mass estimates in particle physics models based on the spectral action functional.
25 pages

possible interest, briefly mentioned:
http://arxiv.org/abs/1208.5038
Free fermi and bose fields in TQFT and GBF
Robert Oeckl (UNAM)
(Submitted on 24 Aug 2012)
We present a rigorous and functorial quantization scheme for linear fermionic and bosonic field theory targeting the topological quantum field theory (TQFT) that is part of the general boundary formulation (GBF). Motivated by geometric quantization, we generalize a previous axiomatic characterization of classical linear bosonic field theory to include the fermionic case. We proceed to describe the quantization scheme, combining a Fock space quantization for state spaces with the Feynman path integral for amplitudes. We show rigorously that the resulting quantum theory satisfies the axioms of the TQFT, in a version generalized to include fermionic theories. In the bosonic case we show the equivalence to a previously developed holomorphic quantization scheme. Remarkably, it turns out that consistency in the fermionic case requires state spaces to be Krein spaces rather than Hilbert spaces. This is also supported by arguments from geometric quantization and by the explicit example of the Dirac field theory. Contrary to intuition from standard quantum theory, we show that this is compatible with a consistent probability interpretation in the GBF. Another surprise in the fermionic case is the emergence of an algebraic notion of time, already in the classical theory, but inherited by the quantum theory. As in earlier work we need to impose an integrability condition in the bosonic case for all TQFT axioms to hold, due to the gluing anomaly. In contrast, we are able to renormalize this gluing anomaly in the fermionic case.
59 pages
 
Last edited:
  • #1,787


not Loop-and-allied QG but possibly of general interest:
http://arxiv.org/abs/1208.5481
Gamma Ray Signals from Dark Matter: Concepts, Status and Prospects
Torsten Bringmann, Christoph Weniger
(Submitted on 27 Aug 2012)
Weakly interacting massive particles (WIMPs) remain a prime candidate for the cosmological dark matter (DM), even in the absence of current collider signals that would unambiguously point to new physics below the TeV scale. The self-annihilation of these particles in astronomical targets may leave observable imprints in cosmic rays of various kinds. In this review, we focus on gamma rays which we argue to play a pronounced role among the various possible messengers. We discuss the most promising spectral and spatial signatures to look for, give an update on the current state of gamma-ray searches for DM and an outlook concerning future prospects. We also assess in some detail the implications of a potential signal identification for particle DM models as well as for our understanding of structure formation. Special emphasis is put on the possible evidence for a 130 GeV line-like signal that was recently identified in the data of the Fermi gamma-ray space telescope.
43 pages, 6 figures, 2 tables; invited contribution to special issue `The next decade in Dark Matter and Dark Energy' in 'Physics of the Dark Universe'.

http://arxiv.org/abs/1208.5715
The Top 10500 Reasons Not to Believe in the Landscape
T. Banks
(Submitted on 28 Aug 2012)
The String Landscape is a fantasy. We actually have a plausible landscape of minimally supersymmetric AdS4 solutions of supergravity modified by an exponential superpotential. None of these solutions is accessible to world sheet perturbation theory. If they exist as models of quantum gravity, they are defined by conformal field theories, and each is an independent quantum system, which makes no transitions to any of the others. This landscape has nothing to do with CDL tunneling or eternal inflation.
A proper understanding of CDL transitions in QFT on a fixed background dS space, shows that the EI picture of this system is not justified within the approximation of low energy effective field theory. The cutoff independent physics, defined by the Euclidean functional integral over the 4-sphere admits only a finite number of instantons. Plausible extensions of these ideas to a quantum theory of gravity obeying the holographic principle explain all of the actual facts about CDL transitions in dS space, and lead to a picture radically different from eternal inflation.
Theories of Eternal Inflation (EI) have to rely too heavily on the anthropic principle to be consistent with experiment. Given the vast array of effective low energy field theories that could be produced by the conventional picture of the string landscape one is forced to conclude that the most numerous anthropically allowed theories will disagree with experiment violently.
38 pages
 
Last edited:
  • #1,788


An up-to-date formulation of Loop, and Loop BH developments can be found in Rovelli's July 2012 Stockholm slides:
http://www.cpt.univ-mrs.fr/~rovelli/RovelliStockholmSpinFoam.pdf
Covariant Loop Quantum Gravity: Recent developments and open problems.

http://www.cpt.univ-mrs.fr/~rovelli/RovelliStockholmTermo.pdf
Horizon Entropy and LQG

http://arxiv.org/abs/1208.5874
A possibility to solve the problems with quantizing gravity
S. Hossenfelder
(Submitted on 29 Aug 2012)
It is generally believed that quantum gravity is necessary to resolve the known tensions between general relativity and the quantum field theories of the standard model. Since perturbatively quantized gravity is non-renormalizable, the problem how to unify all interactions in a common framework has been open since the 1930s. Here, I propose a possibility to circumvent the known problems with quantizing gravity, as well as the known problems with leaving it unquantized: By changing the prescription for second quantization, a perturbative quantization of gravity is sufficient as an effective theory because matter becomes classical before the perturbative expansion breaks down. This is achieved by considering the vanishing commutator between a field and its conjugated momentum as a symmetry that is broken at low temperatures, and by this generates the quantum phase that we currently live in, while at high temperatures Planck's constant goes to zero.
4 pages, 1 figure
 
Last edited:
  • #1,789


two interesting FQXI essays

http://fqxi.org/community/forum/topic/1442
Against Spacetime by Giovanni Amelino-Camelia
The notion of ``location" physics really needs is exclusively the one of ``detection at a given detector" and the time for each such detection is most primitively assessed as the readout of some specific material clock. The redundant abstraction of a macroscopic spacetime organizing all our particle detections is unproblematic and extremely useful in the classical-mechanics regime. But I here observe that in some of the contexts where quantum mechanics is most significant, such as quantum tunneling through a barrier, the spacetime abstraction proves to be cumbersome. And I argue that in quantum-gravity research we might limit our opportunities for discovery if we insist on the availability of a spacetime picture.

http://fqxi.org/community/forum/topic/1443
What if Natural Numbers Are Not Constant? by Jerzy Krol
Mathematics, via model theory, gives us the possibility that natural numbers could be understood as varying objects. We analyze this from the point of view of physics were standard models of natural and real numbers are not always absolute or fixed. The extended equivalence principle appears covering the changes of the numbers. As the consequence strange exotic geometry emerges with which a kind of gravity is assigned. Taking such perspective, from the foundations of mathematics, sheds completely new light on the nature and construction of a theory of quantum gravity.
 
  • #1,790


To get to the discussion of Hossenfelder's essay when it is submitted to FQXI, go to http://fqxi.org/community/forum/category/31418
and choose alphabetical ordering by author's surname, and scroll down to H. that's one way anyway. It apparently has not been turned in yet.

http://arxiv.org/abs/1208.6217
A complete hybrid quantization in inhomogeneous cosmology
Mikel Fernández-Méndez, Guillermo A. Mena Marugán, Javier Olmedo
(Submitted on 30 Aug 2012)
A complete quantization of a homogeneous and isotropic spacetime with closed spatial sections coupled to a massive scalar field is provided, within the framework of Loop Quantum Cosmology. We identify solutions with their initial data on the minimum volume section, and from this we construct the physical Hilbert space. Moreover, a perturbative study allows us to introduce small inhomogeneities. After gauge fixing, the inhomogeneous part of the system is reduced to a linear field theory. We then adopt a standard Fock representation to quantize these degrees of freedom. For the considered case of compact spatial topology, the requirements of: i) invariance under the spatial isometries, and ii) unitary implementation of the quantum dynamics, pick up a unique Fock representation and a particular set of canonical fields (up to unitary equivalence).
6 pages

http://arxiv.org/abs/arXiv:1208.5456
Numerical loop quantum cosmology: an overview
Parampreet Singh
(Submitted on 27 Aug 2012)
A brief review of various numerical techniques used in loop quantum cosmology and results is presented. These include the way extensive numerical simulations shed insights on the resolution of classical singularities, resulting in the key prediction of the bounce at the Planck scale in different models, and the numerical methods used to analyze the properties of the quantum difference operator and the von Neumann stability issues. Using the quantization of a massless scalar field in an isotropic spacetime as a template, an attempt is made to highlight the complementarity of different methods to gain understanding of the new physics emerging from the quantum theory. Open directions which need to be explored with more refined numerical methods are discussed.
33 Pages, 4 figures. Invited contribution to appear in a special issue of Classical and Quantum Gravity devoted to numerical methods
 
Last edited:
  • #1,791


http://arxiv.org/abs/1209.0065
General relativistic statistical mechanics
Carlo Rovelli
(Submitted on 1 Sep 2012)
Understanding thermodynamics and statistical mechanics in the full general relativistic context is an open problem. I give tentative definitions of equilibrium state, mean values, mean geometry, entropy and temperature, which reduce to the conventional ones in the non-relativistic limit, but remain valid for a general covariant theory. The formalism extends to quantum theory. The construction builds on the idea of thermal time, on a notion of locality for this time, and on the distinction between global and local temperature. The last is the temperature measured by a local thermometer, and is given by kT = [STRIKE]h[/STRIKE] dτ/ds, with k the Boltzmann constant, [STRIKE]h[/STRIKE] the Planck constant, ds proper time and dτ the equilibrium thermal time.
9 pages. A tentative second step in the thermal time direction, 10 years after the paper with Connes. The aim is the full thermodynamics of gravity. The language of the paper is a bit technical: look at the Appendix first

http://arxiv.org/abs/1209.0396
Lorentz-covariant Hamiltonian analysis of BF gravity with the Immirzi parameter
Mariano Celada, Merced Montesinos
(Submitted on 3 Sep 2012)
We perform the Lorentz-covariant Hamiltonian analysis of two Lagrangian action principles that describe general relativity as a constrained BF theory and that include the Immirzi parameter. The relation between these two Lagrangian actions has been already studied through a map among the fields involved. The main difference between these is the way the Immirzi parameter is included, since in one of them the Immirzi parameter is included explicitly in the BF terms, whereas in the other (the CMPR action) it is in the constraint on the B fields. In this work we continue the analysis of their relationship but at the Hamiltonian level. Particularly, we are interested in seeing how the above difference appears in the constraint structure of both action principles. We find that they both possesses the same number of first-class and second-class constraints and satisfy a very similar (off-shell) Poisson-bracket algebra on account of the type of canonical variables employed. The two algebras can be transformed into each other by making a suitable change of variables
16 pages
 
Last edited:
  • #1,792


http://arxiv.org/abs/1209.0473
Observational effects from quantum cosmology
Gianluca Calcagni
(Submitted on 3 Sep 2012)
The status of quantum cosmologies as testable models of the early universe is assessed in the context of inflation. While traditional Wheeler-DeWitt quantization is unable to produce sizable effects in the cosmic microwave background, the more recent loop quantum cosmology can generate potentially detectable departures from the standard cosmic spectrum. Thus, present observations constrain the parameter space of the model, which could be made falsifiable by near-future experiments.
14 pages, 3 figures. Invited review article also containing original material

brief mention:
http://arxiv.org/abs/1209.0480
Beyond H0 and q0: Cosmology is no longer just two numbers
Abraham R. Neben, Michael S. Turner
(Submitted on 3 Sep 2012)
For decades, H0 and q0 were the quest of cosmology, as they promised to characterize our "world model" in a model-independent way. Using simulated data, we show that q0 cannot be both accurately and precisely determined using distance indicators. While H0 can be both accurately and precisely determined, to avoid a small bias in its direct measurements (of order -5 %) we demonstrate that H0M (assuming flatness and w=-1) is a better choice of two parameters, even if our world model is not precisely Lambda CDM. We illustrate with the analysis of the Constitution set of supernovae and indirectly infer q0 = -0.57 +/- 0.04. Finally, we show that it may be possible to directly determine q0 using the time dependence of redshifts, a method far less susceptible to the biases that plague measurements using distance indicators.
8 pages, 9 figures
 
Last edited:
  • #1,793


Three new FQXI essays

http://fqxi.org/community/forum/topic/1495
http://fqxi.org/data/essay-contest-files/Barbour_Reductionism.pdf
Reductionist Doubts by Julian Barbour
According to reductionism, every complex phenomenon can and should be explained in terms of the simplest possible entities and mechanisms. The parts determine the whole. This approach has been an outstanding success in science, but this essay will point out ways in which it could nevertheless be giving us wrong ideas and holding back progress. For example, it may be impossible to understand key features of the universe such as its pervasive arrow of time and remarkably high degree of isotropy and homogeneity unless we study it holistically -- as a true whole. A satisfactory interpretation of quantum mechanics is also likely to be profoundly holistic, involving the entire universe. The phenomenon of entanglement already hints at such a possibility.

http://fqxi.org/community/forum/topic/1504
http://fqxi.org/data/essay-contest-files/Dreyer_fqxi2012.pdf
Not on but of. by Olaf Dreyer
In physics we encounter particles in one of two ways. Either as fundamental constituents of the theory or as emergent excitations. These two ways differ by how the particle relates to the background. It either sits \emph{on} the background, or it is an excitation \emph{of} the background. We argue that by choosing the former to construct our fundamental theories we have made a costly mistake. Instead we should think of particles as excitations of a background. We show that this point of view sheds new light on the cosmological constant problem and even leads to observable consequences by giving a natural explanation for the appearance of MOND-like behavior. In this context it also becomes clear why there are numerical coincidences between the MOND acceleration parameter $a_0$, the cosmological constant $\Lambda$ and the Hubble parameter $H_0$.

http://fqxi.org/community/forum/topic/1506
http://fqxi.org/data/essay-contest-files/DAriano_FQXi_1.pdf
Quantum-Informational Principles for Physics by Giacomo Mauro D'Ariano
t is time to to take a pause of reflection on the general foundations of physics, re-examining the solidity of the most basic principles, as the relativity and the equivalence principles that are currently under dispute for violations at the Planck scale. A constructive criticism engages us in seeking new general principles, which reduce to the old ones as approximations holding in the physical domain already explored. At the very basis of physics are epistemological and operational rules for the same formulability of the physical law and for the computability of its theoretical predictions, rules that give rise to new solid principles. These rules lead us to a quantum-information theoretic formulation, hinging on a logical identification of the experimental protocol with the quantum algorithm
 
  • #1,794


http://arxiv.org/abs/1209.0881

The Physics of Events: A Potential Foundation for Emergent Space-Time

Kevin H. Knuth, Newshaw Bahreyni
Comments: 42 pages, 16 figures
Subjects: Mathematical Physics (math-ph); General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Theory (hep-th); Quantum Physics (quant-ph)
Everything that is detected or measured is the direct result of something influencing something else. This is the essence of the concept of force, which has become central to physics. By considering both the act of influencing and the response to such influence as a pair of events, we can describe a universe of interactions as a partially-ordered set of events. In this paper, we take the partially-ordered set of events as a fundamental picture of influence and aim to determine what interesting physics can be recovered. This is accomplished by identifying a means by which events in a partially-ordered set can be aptly and consistently quantified. Since, in general, a partially-ordered set lacks symmetries to constraint any quantification, we propose to distinguish a chain of events, which represents an observer, and quantify some subset of events with respect to the observer chain. We demonstrate that consistent quantification with respect to pairs of observer chains exhibiting a constant relationship with one another results in a metric analogous to the Minkowski metric and that transformation of the quantification with respect to one pair of chains to quantification with respect to another pair of chains results in the Bondi k-calculus, which represents a Lorentz transformation under a simple change of variables. We further demonstrate that chain projection induces geometric structure in the partially-ordered set, which itself is inherently both non-geometric and non-dimensional. Collectively, these results suggest that the concept of space-time geometry may emerge as a unique way for an embedded observer to aptly and consistently quantify a partially-ordered set of events. In addition to having potential implications for space-time physics, this also may serve as a foundation for understanding analogous space-time in condensed matter systems.
 
  • #1,795


http://arxiv.org/abs/1209.1344
Point particles in 2+1 dimensions: toward a semiclassical loop gravity formulation
Jonathan Ziprick
(Submitted on 6 Sep 2012)
We study point particles in 2+1 dimensional first order gravity using a triangulation to fix the connection and frame-field. The Hamiltonian is reduced to a boundary term which yields the total mass. The triangulation is dynamical with non-trivial transitions occurring when a particle meets an edge. This framework facilitates a description in terms of the loop gravity phase space.
3 pages, for Theory Canada 7 conference proceedings in Canadian Journal of Physics

http://arxiv.org/abs/1209.1110
Introduction to multifractional spacetimes
Gianluca Calcagni
(Submitted on 5 Sep 2012)
We informally review the construction of spacetime geometries with multifractal and, more generally, multiscale properties. Based on fractional calculus, these continuous spacetimes have their dimension changing with the scale; they display discrete symmetries in the ultraviolet and ordinary Poincar\'e symmetries in the infrared. Under certain reasonable assumptions, field theories (including gravity) on multifractional geometries are generally argued to be perturbatively renormalizable. We also sketch the relation with other field theories of quantum gravity based on the renormalization group.
27 pages, 6 figures. Lectures given at Sixth International School on Field Theory and Gravitation 2012 (Petropolis, Brazil). To appear in PoS
 
Last edited:
  • #1,796


http://arxiv.org/abs/1209.1266

Machian Time Is To Be Abstracted From What Change?

Edward Anderson
(Submitted on 6 Sep 2012)
"It is utterly beyond our power to measure the changes of things by time. Quite the contrary, time is an abstraction at which we arrive through the changes of things." Ernst Mach [1].
What change? Three answers to this are `any change' (Rovelli), 'all change' (Barbour) and my argument here for the middle ground of a `sufficient totality of locally relevant change' (STLRC) giving a generalization of the astronomers' ephemeris time. I then use STLRC as a selection principle on existing and new approaches to the Problem of Time in Quantum Gravity. Emergent Jacobi-Barbour-Bertotti time can be interpreted as arising from a STLRC, resolves the classical Problem of Time and has an emergent semiclassical counterpart as regards facing the QM Problem of Time.
 
  • #1,797


Frank Hellmann's 4 September online seminar talk
http://relativity.phys.lsu.edu/ilqgs/hellmann090412.pdf
http://relativity.phys.lsu.edu/ilqgs/hellmann090412.wav
To follow, download the slides PDF first and have them ready when you turn on the audio.

It is about 3 papers, one of which has already appeared on Arxiv, the other two soon to appear.
Papers:
* B. Bahr, B. Dittrich, FH, W. Kaminski:
Holonomy Spin Foam Models: Definition and coarse graining.
(arxiv:1208:3388),
Holonomy Spin Foam Models: Boundary Hilbert spaces and canonical dynamics. (arxiv:soon)
* FH, W. Kaminski:
Holonomy Spin Foam Models: Asymptotic Dynamics of EPRL type
models.
(arxiv: soon+ε)

The authors are at Perimeter, MPI-Potsdam (Albert Einstein Institute), and Cambridge DAMPT. The abstract for the first of the three papers is:
==quote==
We propose a new holonomy formulation for spin foams, which naturally extends the theory space of lattice gauge theories. This allows current spin foam models to be defined on arbitrary two–complexes as well as to generalize current spin foam models to arbitrary, in particular finite groups. The similarity with standard lattice gauge theories allows to apply standard coarse graining methods , which for finite groups can now be easily considered numerically. We will summarize other holonomy and spin network formulations of spin foams and group field theories and explain how the different representations arise through variable transformations in the partition function. A companion paper will provide a description of boundary Hilbert spaces as well as a canonical dynamic encoded in transfer operators.
==endquote==
For more information about the ILQGS series of talks:
http://relativity.phys.lsu.edu/ilqgs/
http://relativity.phys.lsu.edu/ilqgs/schedulefa12.html
 
Last edited:
  • #1,798


http://arxiv.org/abs/1209.1609
A Quantum Gravity Extension of the Inflationary Scenario
Ivan Agullo, Abhay Ashtekar, William Nelson
(Submitted on 7 Sep 2012)
Since the standard inflationary paradigm is based on quantum field theory on classical space-times, it excludes the Planck era. Using techniques from loop quantum gravity, the paradigm is extended to a self-consistent theory from the Planck scale to the onset of slow roll inflation, covering some 11 orders of magnitude in energy density and curvature. This pre-inflationary dynamics also opens a small window for novel effects, e.g. a source for non-Gaussianities, which could extend the reach of cosmological observations to the deep Planck regime of the early universe.
4 pages, 2 figures
 
  • #1,799


http://arxiv.org/abs/1209.2752
On the choice of time in the continuum limit of polymeric effective theories
Alejandro Corichi, Tatjana Vukasinac
(Submitted on 12 Sep 2012)
In polymeric quantum theories, a natural question pertains to the so called continuum limit, corresponding to the limit where the 'discreteness parameter' λ approaches zero. In particular one might ask whether the limit exists and, in that case, what the limiting theory is. Here we review recent results on the classical formulation of the problem for a soluble model in loop quantum cosmology. We show that it is only through the introduction of a particular λ-dependent internal time function that the limit λ→0 can be well defined. We then compare this result with the existing analysis in the quantum theory, where the dynamics was cast in terms of an internal (λ-independent) parameter for which the limit does not exist. We briefly comment on the steps needed to define the corresponding time parameter in the quantum theory for which the limit was shown to exist classically.
12 pages

http://arxiv.org/abs/1209.2766
Anomaly freedom of the vector modes with holonomy corrections in perturbative Euclidean loop quantum gravity
Jian-Pin Wu, Yongge Ma
(Submitted on 13 Sep 2012)
We study the perturbation of the effective Hamiltonian constraint with holonomy correction from Euclidean loop quantum gravity. The Poisson bracket between the corrected Hamiltonian constraint and the diffeomorphism constraint is derived for vector modes. Some specific form of the holonomy correction function ficd is found, which satisfies that the constraint algebra is anomaly-free. This result confirms the possibility of non-trivial holonomy corrections from full theory while preserving anomaly-free constraint algebra in the perturbation framework. It also gives valuable hints on the possible form of holonomy corrections in effective loop quantum gravity.
16 pages, no figures
 
Last edited:
  • #1,800


http://arxiv.org/abs/1209.3087
Entropy and entanglement in polymer quantization
Tommaso F. Demarie, Daniel R. Terno
(Submitted on 14 Sep 2012)
Polymer quantization is as a useful toy model for the mathematical aspects of loop quantum gravity and is interesting in its own right. Analyzing entropies in the standard Hilbert space and the polymer Hilbert space we show that they converge in the limit of vanishing polymer scale. We derive a general bound that relates entropies of physically equivalent states in unitarily inequivalent representations.
5 pages

http://arxiv.org/abs/1209.3252
A review of the 1/N expansion in random tensor models
Razvan Gurau
(Submitted on 14 Sep 2012)
Matrix models are a highly successful framework for the analytic study of random two dimensional surfaces with applications to quantum gravity in two dimensions, string theory, conformal field theory, statistical physics in random geometry, etc. Their success relies crucially on the so called 1/N expansion introduced by 't Hooft.
In higher dimensions matrix models generalize to tensor models. In the absence of a viable 1/N expansion tensor models have for a long time been less successful in providing an analytically controlled theory of random higher dimensional topological spaces. This situation has drastically changed recently. Models for a generic complex tensor have been shown to admit a 1/N expansion dominated by graphs of spherical topology in arbitrary dimensions and to undergo a phase transition to a continuum theory.
11 pages. Proceedings of the International Congress on Mathematical Physics 2012 - Topical Section: Quantum Field Theory
 
Last edited:
Back
Top