http://arxiv.org/abs/1212.5166
Modeling black holes with angular momentum in loop quantum gravity
Ernesto Frodden, Alejandro Perez, Daniele Pranzetti, Christian Roeken
(Submitted on 20 Dec 2012)
We construct a SU(2) connection formulation of Kerr isolated horizons. As in the non-rotating case, the model is based on a SU(2) Chern-Simons theory describing the degrees of freedom on the horizon. The presence of a non-vanishing angular momentum modifies the admissibility conditions for spin network states. Physical states of the system are in correspondence with open intertwiners with total spin matching the angular momentum of the spacetime.
18 pages.
http://arxiv.org/abs/1212.5183
On the Architecture of Spacetime Geometry
Eugenio Bianchi, Robert C. Myers
(Submitted on 20 Dec 2012)
We propose entanglement entropy as a probe of the architecture of spacetime in quantum gravity. We argue that the leading contribution to this entropy satisfies an area law for any sufficiently large region in a smooth spacetime, which, in fact, is given by the Bekenstein-Hawking formula. This conjecture is supported by various lines of evidence from perturbative quantum gravity, simplified models of induced gravity and loop quantum gravity, as well as the AdS/CFT correspondence.
8 pages, 1 figure
http://arxiv.org/abs/1212.5246
Gravitational origin of the weak interaction's chirality
Stephon Alexander, Antonino Marciano, Lee Smolin
(Submitted on 20 Dec 2012)
We present a new unification of the electro-weak and gravitational interactions based on the joining the weak SU(2) gauge fields with the left handed part of the space-time connection, into a single gauge field valued in the complexification of the local Lorentz group. Hence, the weak interactions emerge as the right handed chiral half of the space-time connection, which explains the chirality of the weak interaction. This is possible, because, as shown by Plebanski, Ashtekar, and others, the other chiral half of the space-time connection is enough to code the dynamics of the gravitational degrees of freedom.
This unification is achieved within an extension of the Plebanski action previously proposed by one of us. The theory has two phases. A parity symmetric phase yields, as shown by Speziale, a bi-metric theory with eight degrees of freedom: the massless graviton, a massive spin two field and a scalar ghost. Because of the latter this phase is unstable. Parity is broken in a stable phase where the eight degrees of freedom arrange themselves as the massless graviton coupled to an SU(2) triplet of chirally coupled Yang-Mills fields. It is also shown that under this breaking a Dirac fermion expresses itself as a chiral neutrino paired with a scalar field with the quantum numbers of the Higgs.
21 pages
http://arxiv.org/abs/1212.4987
Does Gravity's Rainbow induce Inflation without an Inflaton?
Remo Garattini, Mairi Sakellariadou
(Submitted on 20 Dec 2012)
We study aspects of quantum cosmology in the presence of a modified space-time geometry. In particular, within the context of Gravity's Rainbow modified geometry, motivated from quantum gravity corrections at the Planck energy scale, we show that the distortion of the metric leads to a Wheeler-De Witt equation whose solution admits outgoing plane waves. Hence, a period of cosmological inflation may arise without the need for introducing an inflaton field.
13 pages
http://arxiv.org/abs/1212.5064
A note on the Holst action, the time gauge, and the Barbero-Immirzi parameter
Marc Geiller, Karim Noui
(Submitted on 20 Dec 2012)
In this note, we review the canonical analysis of the Holst action in the time gauge, with a special emphasis on the Hamiltonian equations of motion and the fixation of the Lagrange multipliers. This enables us to identify at the Hamiltonian level the various components of the covariant torsion tensor, which have to be vanishing in order for the classical theory not to depend upon the Barbero-Immirzi parameter. We also introduce a formulation of three-dimensional gravity with an explicit phase space dependency on the Barbero-Immirzi parameter as a potential way to investigate its fate and relevance in the quantum theory.
22 pages
http://arxiv.org/abs/1212.5150
A loop quantum multiverse?
Martin Bojowald
(Submitted on 20 Dec 2012)
Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.
10 pages, 9 figures, based on a plenary talk given at Multicosmofun '12, Szeczin, Poland
http://arxiv.org/abs/1212.5233
Causal loop in the theory of Relative Locality
Lin-Qing Chen
(Submitted on 20 Dec 2012)
Relative locality is a proposal for describing the Planck scale modifications to relativistic dynamics resulting from non-trivial momentum space geometry. A simple construction of interaction processes shows that Relative Locality allows for existence of causal loops, which arises from the phase space structure of the theory. The general condition allowing such process to happen is studied. We showcase this when the geometry of momentum space is taken to be Kappa-Poincare momentum space.
5 pages, 3 figures
brief mention:
http://arxiv.org/abs/1212.5226
Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results
G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley, M. R. Nolta, M. Halpern, R. S. Hill, N. Odegard, L. Page, K. M. Smith, J. L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, E. Wollack, E. L. Wright
(Submitted on 20 Dec 2012)
We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets...
...
31 pages, 12 figures