http://arxiv.org/abs/1011.2779
Inflationary observables in loop quantum cosmology
Martin Bojowald, Gianluca Calcagni
40 pages
(Submitted on 11 Nov 2010)
"The full set of cosmological observables coming from linear scalar and tensor perturbations of loop quantum cosmology is computed in the presence of inverse-volume corrections. Background inflationary solutions are found at linear order in the quantum corrections; depending on the values of quantization parameters, they obey an exact or perturbed power-law expansion in conformal time. The comoving curvature perturbation is shown to be conserved at large scales, just as in the classical case. Its associated Mukhanov equation is obtained and solved. Combined with the results for tensor modes, this yields the scalar and tensor indices, their running, and the tensor-to-scalar ratio, which are all first order in the quantum correction. The latter could be sizable in phenomenological scenarios. Contrary to a pure minisuperspace parametrization, the lattice refinement parametrization is in agreement with both anomaly cancellation and our results on background solutions and linear perturbations. The issue of the choice of parametrization is also discussed in relation with a possible superluminal propagation of perturbative modes, and conclusions for quantum spacetime structure are drawn."
http://arxiv.org/abs/1011.2961
Static isolated horizons: SU(2) invariant phase space, quantization, and black hole entropy
Alejandro Perez, Daniele Pranzetti
22 pages, 1 figure
(Submitted on 12 Nov 2010)
"We study the classical field theoretical formulation of static generic isolated horizons in a manifestly SU(2) invariant formulation. We show that the usual classical description requires revision in the non-static case due to the breaking of diffeomorphism invariance at the horizon leading to the non conservation of the usual pre-symplectic structure. We argue how this difficulty could be avoided by a simple enlargement of the field content at the horizon that restores diffeomorphism invariance. Restricting our attention to static isolated horizons we study the effective theories describing the boundary degrees of freedom. A quantization of the horizon degrees of freedom is proposed. By defining a statistical mechanical ensemble where only the area A of the horizon is fixed macroscopically-states with fluctuations away from spherical symmetry are allowed-we show that it is possible to obtain agreement with the Hawking's area law---S = A/4 (in Planck Units)---without fixing the Immirzi parameter to any particular value: consistency with the area law only imposes a relationship between the Immirzi parameter and the level of the Chern-Simons theory involved in the effective description of the horizon degrees of freedom."
http://arxiv.org/abs/1011.3022
High-order quantum back-reaction and quantum cosmology with a positive cosmological constant
Martin Bojowald, David Brizuela, Hector H. Hernandez, Michael J. Koop, Hugo A. Morales-Tecotl
33 pages, 9 figures
(Submitted on 12 Nov 2010)
"When quantum back-reaction by fluctuations, correlations and higher moments of a state becomes strong, semiclassical quantum mechanics resembles a dynamical system with a high-dimensional phase space. Here, systematic numerical methods to derive the dynamical equations including all quantum corrections to high order in the moments are introduced, together with a quantum cosmological example to illustrate some implications. The results show, for instance, that the initial Gaussian form of an initial state is maintained only briefly, but that the evolving state settles down to a new characteristic shape afterwards. At some point during the evolution all moments considered become of equal size and no truncation to finite order is possible. But until that time is reached, numerical evaluations provide a large amount of information about dynamical quantum states."
http://arxiv.org/abs/1011.3040
An effective approach to the problem of time: general features and examples
Martin Bojowald, Philipp A Hoehn, Artur Tsobanjan
59 pages, 9 figures
(Submitted on 12 Nov 2010)
"The effective approach to quantum dynamics allows a reformulation of the Dirac quantization procedure for constrained systems in terms of an infinite-dimensional constrained system of classical type. For semiclassical approximations, the quantum constrained system can be truncated to finite size and solved by the reduced phase space or gauge-fixing methods. In particular, the classical feasibility of local internal times is directly generalized to quantum systems, overcoming the main difficulties associated with the general problem of time in the semiclassical realm. The key features of local internal times and the procedure of patching global solutions using overlapping intervals of local internal times are described and illustrated by two quantum mechanical examples. The choice of time is tantamount to a choice of gauge at the effective level and changing the clock is, therefore, equivalent to a gauge transformation. This article complements the conceptual discussion in arXiv:1009.5953."
http://arxiv.org/abs/1011.2794
Entropy Production during Asymptotically Safe Inflation
Alfio Bonanno, Martin Reuter
17 pages, 4 figures, Invited contribution to the special issue of
Entropy on "Entropy in Quantum Gravity"
(Submitted on 11 Nov 2010)
"The Asymptotic Safety scenario predicts that the deep ultraviolet of Quantum Einstein Gravity is governed by a nontrivial renormalization group fixed point. Analyzing its implications for cosmology using renormalization group improved Einstein equations we find that it can give rise to a phase of inflationary expansion in the early Universe. Inflation is a pure quantum effect here and requires no inflaton field. It is driven by the cosmological constant and ends automatically when the renormalization group evolution has reduced the vacuum energy to the level of the matter energy density. The quantum gravity effects also provide a natural mechanism for the generation of entropy. It could easily account for the entire entropy of the present Universe in the massless sector."