http://arxiv.org/abs/1407.8166
Loop quantum cosmology from group field theory
Gianluca Calcagni
(Submitted on 30 Jul 2014)
We show that the effective dynamics of the recently proposed isotropic condensate state of group field theory (GFT) with Laplacian kinetic operator can be equivalent to that of homogeneous and isotropic loop quantum cosmology (LQC) in the improved dynamics quantization scheme, where the area of elementary holonomy plaquettes is constant. This constitutes a somewhat surprising example of a cosmological model of quantum gravity where the operations of minisuperspace symmetry reduction and quantization can actually commute.
5 pages
http://arxiv.org/abs/1407.8167
Quantum cosmology from quantum gravity condensates: cosmological variables and lattice-refined dynamics
Steffen Gielen, Daniele Oriti
(Submitted on 30 Jul 2014)
In the context of group field theory condensate cosmology, we clarify the extraction of cosmological variables from the microscopic quantum gravity degrees of freedom. We show that an important implication of the second quantized formalism is the dependence of cosmological variables and equations on the quantum gravitational atomic number N (number of spin network vertices/elementary simplices). We clarify the relation of the effective cosmological equations with loop quantum cosmology, understood as an effective (hydrodynamic-like) approximation of a more fundamental quantum gravity theory. By doing so, we provide a fundamental basis to the idea of lattice refinement, showing the dependence of the effective cosmological connection on N, and hence indirectly on the scale factor. Our results open a new arena for exploring effective cosmological dynamics, as this depends crucially on the new observable N, which is entirely of quantum gravitational origin.
6 pages
http://arxiv.org/abs/1407.8143
Realization of DSR-relativistic symmetries in Finsler geometries
Giovanni Amelino-Camelia, Leonardo Barcaroli, Giulia Gubitosi, Stefano Liberati, Niccoló Loret
(Submitted on 30 Jul 2014)
Finsler geometry is a well known generalization of Riemannian geometry which allows to account for a possibly non trivial structure of the space of configurations of relativistic particles. We here establish a link between Finsler geometry and the sort of models with curved momentum space and DSR-relativistic symmetries which have been recently of interest in the quantum-gravity literature. We use as case study the much-studied scenario which is inspired by the κ-Poincaré quantum group, and show that the relevant deformation of relativistic symmetries can be implemented within a Finsler geometry.
26 pages.
http://arxiv.org/abs/1407.8084
How well is our universe described by an FLRW model?
Stephen R. Green, Robert M. Wald
(Submitted on 30 Jul 2014)
Extremely well! The spacetime metric, g
ab, of our universe is approximated by an FLRW metric, g
(0)ab, to about 1 part in 10
4 or better on both large and small scales, except in the immediate vicinity of very strong field objects, such as black holes. However, derivatives of g
ab are not close to derivatives of g
(0)ab, so there can be significant differences in the behavior of geodesics and huge differences in curvature. Consequently, observable quantities in the actual universe may differ significantly from the corresponding observables in the FLRW model. Nevertheless, as we shall review here, we have proven general results showing that the large matter inhomogeneities that occur on small scales cannot produce significant backreaction effects on large scales, so g
(0)ab satisfies Einstein's equation with the averaged stress-energy tensor of matter as its source. We discuss the flaws in some other approaches that have suggested that large backreaction effects may occur. As we also will review here, with a suitable "dictionary," Newtonian cosmologies provide excellent approximations to cosmological solutions to Einstein's equation (with dust and a cosmological constant) on all scales.
18 pages, 2 figures.
http://arxiv.org/abs/1407.8058
If time is a local observable, then Hawking radiation is unitary
H. Nikolic
(Submitted on 28 Jul 2014)
In the usual formulation of quantum theory, time is a global classical evolution parameter, not a local quantum observable. On the other hand, both canonical quantum gravity (which lacks fundamental time-evolution parameter) and the principle of spacetime covariance (which insists that time should be treated on an equal footing with space) suggest that quantum theory should be slightly reformulated, in a manner that promotes time to a local observable. Such a reformulated quantum theory is unitary in a more general sense than the usual quantum theory. In particular, this promotes the non-unitary Hawking radiation to a unitary phenomenon, which avoids the black-hole information paradox.
11 pages, accepted for publication in Int. J. Quantum Inf.
http://arxiv.org/abs/1407.8028
The trivial solution of the gravitational energy-momentum tensor problem
H. Nikolic
(Submitted on 30 Jul 2014)
In the literature one often finds the claim that there is no such thing as an energy-momentum tensor for the gravitational field, and consequently, that the total energy-momentum conservation can only be defined in terms of a gravitational energy-momentum pseudo-tensor. I make a trivial observation that such a conclusion can be avoided by relaxing the assumption that gravitational energy-momentum tensor should only depend on first derivatives of the metric. With such a relaxation, the Einstein equation directly leads to the result that gravitational energy-momentum tensor is essentially the Einstein tensor.
5 pages
http://arxiv.org/abs/1407.7896
Emergent gravitational dynamics in relativistic Bose--Einstein condensate
Alessio Belenchia, Stefano Liberati, Arif Mohd
(Submitted on 29 Jul 2014)
22 pages.
http://arxiv.org/abs/1407.7891
Planck-scale soccer-ball problem: a case of mistaken identity
Giovanni Amelino-Camelia
(Submitted on 29 Jul 2014)
5 pages.