- 24,753
- 794
arXiv:1410.4479
Casimir effect in a quantum space-time
Rodolfo Gambini, Javier Olmedo, Jorge Pullin
(Submitted on 16 Oct 2014)
We apply quantum field theory in quantum space-time techniques to study the Casimir effect for large spherical shells. As background we use the recently constructed exact quantum solution for spherically symmetric vacuum space-time in loop quantum gravity. All calculations are finite and one recovers the usual results without the need of regularization or renormalization. This is an example of how loop quantum gravity provides a natural resolution to the infinities of quantum field theories.
4 pages.
http://arxiv.org/abs/1410.4411
Consistency of matter models with asymptotically safe quantum gravity
P. Donà, Astrid Eichhorn, Roberto Percacci
(Submitted on 16 Oct 2014)
We discuss the compatibility of quantum gravity with dynamical matter degrees of freedom. Specifically, we present bounds we obtained in [1] on the allowed number and type of matter fields within asymptotically safe quantum gravity. As a novel result, we show bounds on the allowed number of spin-3/2 (Rarita-Schwinger) fields, e.g., the gravitino. These bounds, obtained within truncated Renormalization Group flows, indicate the compatibility of asymptotic safety with the matter fields of the standard model. Further, they suggest that extensions of the matter content of the standard model are severely restricted in asymptotic safety. This means that searches for new particles at colliders could provide experimental tests for this particular approach to quantum gravity.
8 pages, 1 figure, 1 table. Proceedings of Theory Canada 9; new results on the gravitino,
briefly noted:
http://arxiv.org/abs/1410.4248
Towards Black Hole Entropy in Shape Dynamics
Gabriel Herczeg, Vasudev Shyam
(Submitted on 15 Oct 2014)
Shape dynamics is classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Since the area of the event horizon of a black hole transforms under a generic spatial Weyl transformation, there has been some doubt that one can speak sensibly about the thermodynamics of black holes in shape dynamics. The purpose of this paper is to show that by treating the event horizon of a black hole as an interior boundary, one can recover familiar notions of black hole thermodynamics in shape dynamics and define a gauge invariant entropy that agrees with general relativity.
9 pages
http://arxiv.org/abs/1410.3881
Universe in a black hole with spin and torsion
Nikodem J. Poplawski
(Submitted on 14 Oct 2014)
The conservation law for the angular momentum in curved spacetime requires that the antisymmetric part of the affine connection (the torsion tensor) is a variable in the principle of least action. The coupling between spin and torsion generates gravitational repulsion in fermionic matter at extremely high densities and avoids the formation of singularities in black holes. We show that every black hole in the presence of torsion forms a nonsingular, closed, nearly flat, homogeneous, and isotropic universe on the other side of its event horizon. Quantum particle production in such a universe can generate a period of exponential expansion which creates an enormous amount of matter in that universe. Accordingly, our Universe may have originated from the interior of a black hole existing in another universe.
10 pages
Casimir effect in a quantum space-time
Rodolfo Gambini, Javier Olmedo, Jorge Pullin
(Submitted on 16 Oct 2014)
We apply quantum field theory in quantum space-time techniques to study the Casimir effect for large spherical shells. As background we use the recently constructed exact quantum solution for spherically symmetric vacuum space-time in loop quantum gravity. All calculations are finite and one recovers the usual results without the need of regularization or renormalization. This is an example of how loop quantum gravity provides a natural resolution to the infinities of quantum field theories.
4 pages.
http://arxiv.org/abs/1410.4411
Consistency of matter models with asymptotically safe quantum gravity
P. Donà, Astrid Eichhorn, Roberto Percacci
(Submitted on 16 Oct 2014)
We discuss the compatibility of quantum gravity with dynamical matter degrees of freedom. Specifically, we present bounds we obtained in [1] on the allowed number and type of matter fields within asymptotically safe quantum gravity. As a novel result, we show bounds on the allowed number of spin-3/2 (Rarita-Schwinger) fields, e.g., the gravitino. These bounds, obtained within truncated Renormalization Group flows, indicate the compatibility of asymptotic safety with the matter fields of the standard model. Further, they suggest that extensions of the matter content of the standard model are severely restricted in asymptotic safety. This means that searches for new particles at colliders could provide experimental tests for this particular approach to quantum gravity.
8 pages, 1 figure, 1 table. Proceedings of Theory Canada 9; new results on the gravitino,
briefly noted:
http://arxiv.org/abs/1410.4248
Towards Black Hole Entropy in Shape Dynamics
Gabriel Herczeg, Vasudev Shyam
(Submitted on 15 Oct 2014)
Shape dynamics is classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Since the area of the event horizon of a black hole transforms under a generic spatial Weyl transformation, there has been some doubt that one can speak sensibly about the thermodynamics of black holes in shape dynamics. The purpose of this paper is to show that by treating the event horizon of a black hole as an interior boundary, one can recover familiar notions of black hole thermodynamics in shape dynamics and define a gauge invariant entropy that agrees with general relativity.
9 pages
http://arxiv.org/abs/1410.3881
Universe in a black hole with spin and torsion
Nikodem J. Poplawski
(Submitted on 14 Oct 2014)
The conservation law for the angular momentum in curved spacetime requires that the antisymmetric part of the affine connection (the torsion tensor) is a variable in the principle of least action. The coupling between spin and torsion generates gravitational repulsion in fermionic matter at extremely high densities and avoids the formation of singularities in black holes. We show that every black hole in the presence of torsion forms a nonsingular, closed, nearly flat, homogeneous, and isotropic universe on the other side of its event horizon. Quantum particle production in such a universe can generate a period of exponential expansion which creates an enormous amount of matter in that universe. Accordingly, our Universe may have originated from the interior of a black hole existing in another universe.
10 pages
Last edited: