- 24,753
- 795
http://arxiv.org/abs/1111.4997
A Renormalizable 4-Dimensional Tensor Field Theory
Joseph Ben Geloun, Vincent Rivasseau
(Submitted on 21 Nov 2011)
We prove that an integrated version of the Gurau colored tensor model supplemented with the usual Bosonic propagator on U(1)4 is renormalizable to all orders in perturbation theory. The model is of the type expected for quantization of space-time in 4D Euclidean gravity and is the first example of a renormalizable model of this kind. Its vertex and propagator are four-stranded like in 4D group field theories, but without gauge averaging on the strands. Surprisingly perhaps, the model is of the φ6 rather than of the φ4 type, since two different φ6-type interactions are log-divergent, i.e. marginal in the renormalization group sense. The renormalization proof relies on a multiscale analysis. It identifies all divergent graphs through a power counting theorem. These divergent graphs have internal and external structure of a particular kind called melonic. Melonic graphs dominate the 1/N expansion of colored tensor models and generalize the planar ribbon graphs of matrix models. A new locality principle is established for this category of graphs which allows to renormalize their divergences through counterterms of the form of the bare Lagrangian interactions. The model also has an unexpected anomalous log-divergent (∫φ2)2 term, which can be interpreted as the generation of a scalar matter field out of pure gravity.
41 pages, 9 figures
brief mention:
http://arxiv.org/abs/1111.4627
Topology of quantum vacuum
G.E. Volovik
(Submitted on 20 Nov 2011)
Topology in momentum space is the main characteristics of the ground states of a system at zero temperature, the quantum vacua. The gaplessness of fermions in bulk, on the surface or inside the vortex core is protected by topology. Irrespective of the deformation of the parameters of the microscopic theory, the energy spectrum of these fermions remains strictly gapless. This solves the main hierarchy problem in particle physics. The quantum vacuum of Standard Model is one of the representatives...
...The topological invariants in extended momentum and coordinate space determine the bulk-surface and bulk-vortex correspondence, connecting the topology in bulk with the real space. The momentum space topology gives some lessons for quantum gravity. In effective gravity emerging at low energy, the collective variables are the tetrad field and spin connections, while the metric is the composite object of tetrad field...
40 pages, 19 figures, draft for Chapter in proceedings the Como Summer School on analogue gravity
classical result of interest and possible use to quantum relativists:
http://arxiv.org/abs/1111.4962
A local Hamiltonian for spherically symmetric gravity coupled to a scalar field
Nestor Alvarez, Rodolfo Gambini, Jorge Pullin
(Submitted on 21 Nov 2011)
We present a gauge fixing of gravity coupled to a scalar field in spherical symmetry such that the Hamiltonian is an integral over space of a local density. Such a formulation had proved elusive over the years. As in any gauge fixing, it works for a restricted set of initial data. We argue that the set could be large enough to attempt a quantization the could include the important case of an evaporating black hole.
4 pages
αβγδεζηθικλμνξοπρσςτυφχψωΓΔΘΛΞΠΣΦΨΩ∏∑∫∂√±←↓→↑↔~≈≠≡ ≤≥½∞(⇐⇑⇒⇓⇔∴∃ℝℤℕℂ⋅)
_
Last edited: