http://arxiv.org/abs/1206.3903
How to detect an anti-spacetime
Marios Christodoulou, Aldo Riello, Carlo Rovelli
(Submitted on 18 Jun 2012)
Is it possible, in principle, to measure the sign of the Lapse? We show that fermion dynamics distinguishes spacetimes having the same metric but different tetrads, for instance a Lapse with opposite sign. This sign might be a physical quantity not captured by the metric. We discuss its possible role in quantum gravity.
6 pages, 8 figures. Article awarded with an "Honorable Mention" from the 2012 Gravity Foundation Award.
http://arxiv.org/abs/1206.3807
Scalar Material Reference Systems and Loop Quantum Gravity
Kristina Giesel, Thomas Thiemann
(Submitted on 17 Jun 2012)
In the past, the possibility to employ (scalar) material reference systems in order to describe classical and quantum gravity directly in terms of gauge invariant (Dirac) observables has been emphasised frequently. This idea has been picked up more recently in Loop Quantum Gravity (LQG) with the aim to perform a reduced phase space quantisation of the theory thus possibly avoiding problems with the (Dirac) operator constraint quantisation method for constrained system. In this work, we review the models that have been studied on the classical and/or the quantum level and parametrise the space of theories so far considered. We then describe the quantum theory of a model that, to the best of our knowledge, so far has only been considered classically. This model could arguably called the optimal one in this class of models considered as it displays the simplest possible true Hamiltonian while at the same time reducing all constraints of General Relativity.
28 pages
http://arxiv.org/abs/1206.3689
Do Barbero-Immirzi connections exist in different dimensions and signatures?
L. Fatibene, M. Francaviglia, S.Garruto
(Submitted on 16 Jun 2012)
We shall show that no reductive splitting of the spin group exists in dimension 3 ≤ m ≤ 20 other than in dimension m = 4. In dimension 4 there are reductive splittings in any signature. Euclidean and Lorentzian signatures are reviewed in particular and signature (2, 2) is investigated explicitly in detail. Reductive splittings allow to define a global SU(2)-connection over spacetime which encodes in a weird way the holonomy of the standard spin connection. The standard Barbero-Immirzi (BI) connection used in LQG is then obtained by restriction to a spacelike slice. This mechanism provides a good control on globality and covariance of BI connection showing that in dimension other than 4 one needs to provide some other mechanism to define the analogous of BI connection and control its globality.
8 pages
http://arxiv.org/abs/1206.3805
Relative locality in a quantum spacetime and the pregeometry of κ-Minkowski
Giovanni Amelino-Camelia, Valerio Astuti, Giacomo Rosati
(Submitted on 17 Jun 2012)
We develop a new description of the much-studied κ-Minkowski noncommutative spacetime, centered on representing on a single Hilbert space not only the κ-Minkowski coordinates, but also the associated differential calculus and the κ-Poincaré symmetry generators.
In this "pregeometric" representation the relevant operators act on the kinematical Hilbert space of the covariant formulation of quantum mechanics, which we argue is the natural framework for studying the implications of the step from commuting spacetime coordinates to the κ-Minkowski case, where the spatial coordinates do not commute with the time coordinate. The empowerment provided by this kinematical-Hilbert space representation allows us to give a crisp characterization of the "fuzziness" of κ-Minkowski spacetime, whose most striking aspect is a relativity of spacetime locality. We show that relative locality, which had been previously formulated exclusively in classical-spacetime setups, for a quantum spacetime takes the shape of a dependence of the fuzziness of a spacetime point on the distance at which an observer infers properties of the event that marks the point.
9 pages
http://arxiv.org/abs/1206.4021
The Wheeler-DeWitt Quantization Can Solve the Singularity Problem
F. T. Falciano, Roberto Pereira, N. Pinto-Neto, E. Sergio Santini
(Submitted on 18 Jun 2012)
We study the Wheeler-DeWitt quantum cosmology of a spatially flat Friedmann cosmological model with a massless free scalar field. We compare the consistent histories approach with the de Broglie-Bohm theory when applied to this simple model under two different quantization schemes: the Schrödinger-like quantization, which essentially takes the square-root of the resulting Klein-Gordon equation through the restriction to positive frequencies and their associated Newton-Wigner states, or the induced Klein-Gordon quantization, that allows both positive and negative frequencies together. We show that the consistent histories approach can give a precise answer to the question concerning the existence of a quantum bounce if and only if one takes the single frequency approach and within a single family of histories, namely, a family containing histories concerning properties of the quantum system at only two specific moments of time: the infinity past and the infinity future. In that case, as shown by Craig and Singh [CS], there is no quantum bounce. In any other situation, the question concerning the existence of a quantum bounce has no meaning in the consistent histories approach. On the contrary, we show that if one considers the de Broglie-Bohm theory, there are always states where quantum bounces occur in both quantization schemes. Hence the assertion that the Wheeler-DeWitt quantization does not solve the singularity problem in cosmology is not precise. To address this question, one must specify not only the quantum interpretation adopted but also the quantization scheme chosen.
13 pages, 1 figure