Lorentz Transf. of Complex Null Tetrads: Formula (3.14-17)

Click For Summary
SUMMARY

The discussion focuses on deriving formulae (3.14), (3.15), and (3.17) for a complex null tetrad ##(\boldsymbol{m}, \overline{\boldsymbol{m}}, \boldsymbol{l}, \boldsymbol{k})##, as referenced in the second edition of "Exact Solutions of Einstein's Field Equations" by Stephani et al. The transformation defined by equation (3.17) is confirmed to represent a boost, with the relationships between the tetrads expressed through equations involving hyperbolic functions. The participants validate the transformations and explore the implications of these equations in the context of Einstein's field equations.

PREREQUISITES
  • Understanding of complex null tetrads in general relativity
  • Familiarity with Einstein's field equations
  • Knowledge of hyperbolic functions and their applications
  • Ability to manipulate tensor equations and transformations
NEXT STEPS
  • Study the derivation of transformations in general relativity, focusing on tetrads
  • Explore the implications of boosts in the context of Lorentz transformations
  • Review hyperbolic functions and their role in physics, particularly in relativity
  • Examine the second edition of "Exact Solutions of Einstein's Field Equations" for deeper insights
USEFUL FOR

Researchers, physicists, and students specializing in general relativity, particularly those interested in the mathematical formulations of tetrads and their transformations.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
For a complex null tetrad ##(\boldsymbol{m}, \overline{\boldsymbol{m}}, \boldsymbol{l}, \boldsymbol{k})##, how to arrive at formulae (3.14), (3.15) and (3.17)? The equation (3.16) is clear as is. (I checked already that they work i.e. that ##\boldsymbol{e}_a' \cdot \boldsymbol{e}_b' = 2m'_{(a} \overline{m}'_{b)} -2k'_{(a} l'_{b)}##.)

1640199241420.png
 
Last edited:
Physics news on Phys.org
ergospherical said:
formulae (3.14), (3.15) and (3.17)?
What reference are these from?
 
PeterDonis said:
What reference are these from?
These are from the second edition of "Exact Solutions of Einstein's Field Equations" by Stephani et al. I have have an elaboration on (3.17), which I have started to type in, but my wife is pulling me away to watch someone get murdered ... er, to stream a show, so it will be a couple of hours before I get back to it.
 
  • Like
  • Haha
Likes   Reactions: vanhees71, ergospherical and martinbn
I have looked at (3.17). I suppose that it is not enough to show that
$$2m'_{(a} \overline{m}'_{b)} -2k'_{(a} l'_{b)} = 2m_{(a} \overline{m}_{b)} -2k_{(a} l_{b)},$$
as this is obvious for transformation (3.17).

I will proceed in a pedestrian way, i.e., I will show that (3.17) defines a boost. Inverting (3.12) gives (using notation that I dislike)
$$\begin{align}
\boldsymbol{E}_4 &= \frac{1}{\sqrt{2}} \left( \boldsymbol{k} +\boldsymbol{l} \right) \\
\boldsymbol{E}_3 &= \frac{1}{\sqrt{2}} \left( \boldsymbol{k} - \boldsymbol{l} \right) .
\end{align}$$
Now define
$$\begin{align}
\boldsymbol{E}'_4 &= \frac{1}{\sqrt{2}} \left( \boldsymbol{k}' +\boldsymbol{l}' \right) \\
\boldsymbol{E}'_3 &= \frac{1}{\sqrt{2}} \left( \boldsymbol{k}' - \boldsymbol{l}' \right) ,
\end{align}$$
with ##\boldsymbol{k}'## and ##\boldsymbol{l}'## given by (3.17). Then, by (3.17),
$$\begin{align}
\boldsymbol{E}'_4 &= \frac{1}{\sqrt{2}} \left( A\boldsymbol{k} +A^{-1} \boldsymbol{l} \right) \\
&= \frac{1}{\sqrt{2}} \left[ \frac{A}{\sqrt{2}} \left( \boldsymbol{E}_4 + \boldsymbol{E_3} \right) + \frac{A^{-1}}{\sqrt{2}} \left( \boldsymbol{E}_4 - \boldsymbol{E_3} \right) \right] \\
&= \frac{1}{2} \left( A + A^{-1} \right) \boldsymbol{E}_4 +\frac{1}{2} \left( A - A^{-1} \right) \boldsymbol{E}_3
\end{align}$$
Since
$$\left[ \frac{1}{2} \left( A + A^{-1} \right) \right]^2 - \left[ \frac{1}{2} \left( A - A^{-1} \right) \right]^2 = 1, $$
we can set
$$\begin{align}
\cosh w &= \frac{1}{2} \left( A + A^{-1} \right) \\
\sinh w &= \frac{1}{2} \left( A - A^{-1} \right)
\end{align}$$
Something similar holds for ##\boldsymbol{E}_3##, so we have a boost with rapidity ##w## and speed ##v = \tanh w##.
 
  • Like
Likes   Reactions: ergospherical

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K