Lorentz Transform Derivation questions

kwestion
Messages
63
Reaction score
0
I'm trying to follow along with Simple Derivation of the Lorentz Transformation, but am having some hurdles.

I'll be referring to step (5) which states:
x'=ax-bct
ct'=act-bx​
In paragraph marked 6, I see that the author tries to get eqn (5) to describe motion of the K' frame. This is an important move, but not understood. Up until that point, I believe x' has been a description of the position of light on the frame K' with x' having rules of motion that include x'=ct'. x'=ct' suggests to me that x' is at the K' origin for only a moment when t'=0, but the author states that:
For the origin of k' we have permanently x' = 0[...]​
I don't understand the "permanence" here. Does x' linger at the K' origin? Did x' change meaning? Is it poor notation? Is it that since t'=0 is the only valid moment* for (5) that the state of that moment constitutes a permanent state for (5)? Is there a better description of why (5) begins to be used to track the motion of the frame? I don't see how the position of x' helps understand the movement of K' here. * "The only valid moment" is an unconfirmed assumption on my part. (5) was derived from equations like x-ct=0 and x+ct=0 (inferred) and x'-ct'=0 and x'+ct'=0 (inferred). Upon combining equations in (5), I think all former conditions need to be satisfied by any x, t, x', or t' used with (5). That is, valid x,t,x',t' must not contradict any of: x-ct=0, x+ct=0, x'-ct'=0, or x'+ct'=0, which implies that x=0, t=0, x'=0, and t'=0. What perspective am I missing?
 
Last edited:
Physics news on Phys.org
This is just a matter of definition. The x' coordinate in the frame K' is defined by measuring distances from some inertially moving object that is at rest in the K' frame.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top