MHB Luca's question via email about a line integral....

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate the line integral $\displaystyle \begin{align*} I = \int_{(0,0,0)}^{\left( 5, \frac{1}{2}, \frac{\pi}{2} \right) }{ 6\,x^2\,\mathrm{d}x + \left[ 6\,z^2 + 9\,\mathrm{e}^{9\,y} \cos{ \left( 10\,z \right) } \right] \,\mathrm{d}y + \left[ 12\,y\,z - 10 \,\mathrm{e}^{9\,y}\sin{ \left( 10\,z \right) } \right] \,\mathrm{d}z } \end{align*}$

I am assuming that this line integral is along the straight line from $\displaystyle \begin{align*} (0,0,0) \end{align*}$ to $\displaystyle \begin{align*} \left( 5, \frac{1}{2}, \frac{\pi}{2} \right) \end{align*}$, which has equation $\displaystyle \begin{align*} \left( x, y, z \right) = t\left( 5, \frac{1}{2} , \frac{\pi}{2} \right) \, , \,t \in \left[ 0, 1 \right] \end{align*}$, so

$\displaystyle \begin{align*} x &= 5\,t \implies \mathrm{d}x = 5\,\mathrm{d}t \\ y &= \frac{1}{2}\,t \implies \mathrm{d}y = \frac{1}{2}\,\mathrm{d}t \\ z &= \frac{\pi}{2}\,t \implies \mathrm{d}z = \frac{\pi}{2}\,\mathrm{d}t \end{align*}$

and so the integral becomes

$\displaystyle \begin{align*} I &= \int_{t=0}^{t=1}{ 6\left( 5\,t \right) ^2 \cdot 5\,\mathrm{d}t + \left[ 6\left( \frac{\pi}{2}\,t \right) ^2 + 9\,\mathrm{e}^{9 \cdot \frac{1}{2}\,t} \cos{ \left( 10 \cdot \frac{\pi}{2}\,t \right) } \right] \cdot \frac{1}{2}\,\mathrm{d}t + \left[ 12 \cdot \frac{1}{2}\,t \cdot \frac{\pi}{2}\,t - 10 \,\mathrm{e}^{ 9 \cdot \frac{1}{2}\,t } \sin{ \left( 10\cdot \frac{\pi}{2}\,t \right) } \right] \cdot \frac{\pi}{2}\,\mathrm{d}t } \\ &= \int_0^1{ \left[ 750\,t^2 + \frac{3\,\pi ^2}{4}\,t^2 + \frac{9}{2}\,\mathrm{e}^{\frac{9}{2}\,t} \cos{ \left( 5\,\pi\,t \right) } + \frac{3\,\pi ^2}{2} \, t^2 - 5\,\pi\,\mathrm{e}^{\frac{9}{2}\,t}\sin{\left( 5\,\pi\,t \right) } \right] \,\mathrm{d}t } \\ &= \int_0^1{ \left[ \left( \frac{3000 + 9\,\pi^2}{4} \right) t^2 + \frac{9}{2}\,\mathrm{e}^{\frac{9}{2}\,t}\cos{\left( 5\,\pi\,t \right) } - 5\,\pi\,\mathrm{e}^{\frac{9}{2}\,t}\sin{ \left( 5\,\pi\,t \right) } \right] \,\mathrm{d}t } \\ &= \left\{ \left( \frac{1000 + 3\,\pi^2}{4} \right) t^3 + \frac{9}{2} \left[ \frac{\mathrm{e}^{\frac{9}{2}\,t}}{\left( \frac{9}{2} \right) ^2 + \left( 5\,\pi \right) ^2} \right] \left[ \frac{9}{2} \, \cos{ \left( 5\,\pi\,t \right) } + 5\,\pi \sin{ \left( 5\,\pi\,t \right) } \right] - 5\,\pi \left[ \frac{ \mathrm{e}^{ \frac{9}{2} \,t } }{ \left( \frac{9}{2} \right) ^2 + \left( 5\,\pi \right) ^2 } \right] \left[ \frac{9}{2} \, \sin{ \left( 5\,\pi\,t \right) } - 5\,\pi \cos{ \left( 5 \, \pi \, t \right) } \right] \right\} _0^1 \\ &= \left\{ \left( \frac{1000 + 3\,\pi ^2}{4} \right) t^3 + \left[ \frac{4\,\mathrm{e}^{\frac{9}{2}\,t}}{81 + 100\,\pi^2} \right] \left[ \left( \frac{81 + 100\,\pi ^2}{4} \right) \cos{ \left( 5\,\pi\,t \right) } \right] \right\} _0^1 \\ &= \left[ \left( \frac{1000 + 3\,\pi ^2}{4} \right) t^3 + \mathrm{e}^{\frac{9}{2}\,t} \cos{ \left( 5\,\pi\,t \right) } \right] _0^1 \\ &= \frac{1000 + 3\,\pi ^2}{4} - \mathrm{e}^{\frac{9}{2}} - 1 \\ &= \frac{996 + 3\,\pi ^2 - 4\,\mathrm{e}^{\frac{9}{2}}}{4} \\ &\approx 166.385\,072 \end{align*}$
 
Mathematics news on Phys.org
Assuming that the integral is independent of the path (which you would need to do since no path is specified) another good choice would be the line, along the x-axis, from (0, 0, 0) to (5, 0, 0) then the line, parallel to the y-axis, from (5, 0, 0) to (5, 1/2, 0), then along the line, parallel to the z-axis, from (5, 1/2, 0) to (5, 1/2, pi/2).

On the first part, only x changes so dy and dz are 0. The integral becomes
\int_0^5 6x^2 dx= \left[2x^3\right]_0^5= 250.

On the second part, only y changes so dx and dz are 0. x is the constant, 5, and z is 0. The integral becomes \int_0^{1/2} 9e^{9y}dy= \left[e^{9y}\right]_0^{1/2}= e^{9/2}- 1.

On the third part, only z changes so dx and dy are 0. x is the constant, 5, and y is the constant, 1/2. The integral becomes \int_0^{\pi/2} 6z+ 10e^{9/2} sin(10z)dz= \left[3z^2- e^{9/2}cos(10z)\right]_0^{\pi/2}= \frac{3\pi^2}{4}+ 2e^{9/2}.

The original integral is the sum of those, 249+ \frac{3\pi^2}{4}+ 3e^{9/2}.

(Better check my arithmetic.)
 
Last edited by a moderator:
[FONT=MathJax_Size1]Of course, if the integral is independent of the path then the integrand, [math]6x^2 dx+ (6z^2+ 9e^{9y}cos(10z))dy+ (12yz- 10e^{9y} sin(10z)dz[/math], must be "exact"- that is, there exist some differentiable function, F(x, y, z), such that the differential is [math]dF= 6x^2 dx+ (6z^2+ 9e^{9y}cos(10z))dy+ (12yz- 10e^{9y} sin(10z)dz[/math] and the integral is just F evaluated at the limits of integration.

In that case, we must have [math]\frac{\partial F}{\partial x}= 6x^2[/math] so that [math]F= 2x^3[/math] plus a "constant". But since the differentiation is with respect to x only, that "constant" can be an arbitrary function of y and z. That is, [math]F(x,y,z)= 2x^3+ G(y, z)[/math].

Differentiating with respect to y, [math]\frac{\partial F}{\partial y}= \frac{\partial G}{\partial y}[/math] and that must be equal to [math]6z^2+ 9e^{9y}cos(10z)[/math].

Integrating [math]\frac{\partial G}{\partial y}= 6z^2+ 9e^{9y}cos(10z)[/math] with respect to y, [math]G(y,z)= 6yz^2+ e^{9y}cos(10z)+ H(z)[/math] where, now, the "constant of integration" must be a differentiable function of z only.

So [math]F(x,y,z)= 2x^3+ 6yz^2+ e^{9y}cos(10z)+ H(z)[/math]. Differentiating that with respect to z, [math]\frac{\partial F}{\partial z}= 12yz- 10e^{9y}sin(10z)+ \frac{dH}{dz}= 12yz- 10e^{9y} sin(10z)[/math] so that \frac{dH}{dz}= 0 and H really is a constant. (And this integral really is independent of the path.)

We have [math]F(x,y,z)= 2x^3+ 6yz^2+ e^{9y}cos(10z)+ C[/math] and need to evaluate that at [math](0, 0, 0)[/math] and [math](5, 1/2, \pi/2)[/math].

[math]F(0,0,0)= 1+ C[/math] and [math]F(5,1/2,\pi/2)= 250+3\pi^2/4- e^{9/2}+ C[/math] so the integral is [math]249+ \frac{3\pi^2}{5}- e^{9/2}[/math]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top