Luca's question via email about a line integral....

Click For Summary
SUMMARY

The discussion focuses on evaluating the line integral defined as $\displaystyle I = \int_{(0,0,0)}^{\left( 5, \frac{1}{2}, \frac{\pi}{2} \right)}{ 6\,x^2\,\mathrm{d}x + \left[ 6\,z^2 + 9\,\mathrm{e}^{9\,y} \cos{ \left( 10\,z \right) } \right] \,\mathrm{d}y + \left[ 12\,y\,z - 10 \,\mathrm{e}^{9\,y}\sin{ \left( 10\,z \right) } \right] \,\mathrm{d}z }$. The integral is computed along a straight line path, resulting in an approximate value of $166.385072$. The discussion also confirms that the integral is path-independent, leading to the conclusion that the integrand is exact and can be expressed as a differentiable function $F(x,y,z)$. The final evaluation of the integral yields $I = \frac{996 + 3\,\pi^2 - 4\,\mathrm{e}^{\frac{9}{2}}}{4}$.

PREREQUISITES
  • Understanding of line integrals in multivariable calculus
  • Familiarity with vector fields and path independence
  • Knowledge of differentiation and integration techniques
  • Proficiency in evaluating exponential and trigonometric functions
NEXT STEPS
  • Study the properties of exact differentials in multivariable calculus
  • Learn about path independence and its implications in vector calculus
  • Explore advanced techniques for evaluating line integrals
  • Investigate the applications of line integrals in physics and engineering
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with line integrals and vector fields, particularly those seeking to deepen their understanding of multivariable calculus concepts.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate the line integral $\displaystyle \begin{align*} I = \int_{(0,0,0)}^{\left( 5, \frac{1}{2}, \frac{\pi}{2} \right) }{ 6\,x^2\,\mathrm{d}x + \left[ 6\,z^2 + 9\,\mathrm{e}^{9\,y} \cos{ \left( 10\,z \right) } \right] \,\mathrm{d}y + \left[ 12\,y\,z - 10 \,\mathrm{e}^{9\,y}\sin{ \left( 10\,z \right) } \right] \,\mathrm{d}z } \end{align*}$

I am assuming that this line integral is along the straight line from $\displaystyle \begin{align*} (0,0,0) \end{align*}$ to $\displaystyle \begin{align*} \left( 5, \frac{1}{2}, \frac{\pi}{2} \right) \end{align*}$, which has equation $\displaystyle \begin{align*} \left( x, y, z \right) = t\left( 5, \frac{1}{2} , \frac{\pi}{2} \right) \, , \,t \in \left[ 0, 1 \right] \end{align*}$, so

$\displaystyle \begin{align*} x &= 5\,t \implies \mathrm{d}x = 5\,\mathrm{d}t \\ y &= \frac{1}{2}\,t \implies \mathrm{d}y = \frac{1}{2}\,\mathrm{d}t \\ z &= \frac{\pi}{2}\,t \implies \mathrm{d}z = \frac{\pi}{2}\,\mathrm{d}t \end{align*}$

and so the integral becomes

$\displaystyle \begin{align*} I &= \int_{t=0}^{t=1}{ 6\left( 5\,t \right) ^2 \cdot 5\,\mathrm{d}t + \left[ 6\left( \frac{\pi}{2}\,t \right) ^2 + 9\,\mathrm{e}^{9 \cdot \frac{1}{2}\,t} \cos{ \left( 10 \cdot \frac{\pi}{2}\,t \right) } \right] \cdot \frac{1}{2}\,\mathrm{d}t + \left[ 12 \cdot \frac{1}{2}\,t \cdot \frac{\pi}{2}\,t - 10 \,\mathrm{e}^{ 9 \cdot \frac{1}{2}\,t } \sin{ \left( 10\cdot \frac{\pi}{2}\,t \right) } \right] \cdot \frac{\pi}{2}\,\mathrm{d}t } \\ &= \int_0^1{ \left[ 750\,t^2 + \frac{3\,\pi ^2}{4}\,t^2 + \frac{9}{2}\,\mathrm{e}^{\frac{9}{2}\,t} \cos{ \left( 5\,\pi\,t \right) } + \frac{3\,\pi ^2}{2} \, t^2 - 5\,\pi\,\mathrm{e}^{\frac{9}{2}\,t}\sin{\left( 5\,\pi\,t \right) } \right] \,\mathrm{d}t } \\ &= \int_0^1{ \left[ \left( \frac{3000 + 9\,\pi^2}{4} \right) t^2 + \frac{9}{2}\,\mathrm{e}^{\frac{9}{2}\,t}\cos{\left( 5\,\pi\,t \right) } - 5\,\pi\,\mathrm{e}^{\frac{9}{2}\,t}\sin{ \left( 5\,\pi\,t \right) } \right] \,\mathrm{d}t } \\ &= \left\{ \left( \frac{1000 + 3\,\pi^2}{4} \right) t^3 + \frac{9}{2} \left[ \frac{\mathrm{e}^{\frac{9}{2}\,t}}{\left( \frac{9}{2} \right) ^2 + \left( 5\,\pi \right) ^2} \right] \left[ \frac{9}{2} \, \cos{ \left( 5\,\pi\,t \right) } + 5\,\pi \sin{ \left( 5\,\pi\,t \right) } \right] - 5\,\pi \left[ \frac{ \mathrm{e}^{ \frac{9}{2} \,t } }{ \left( \frac{9}{2} \right) ^2 + \left( 5\,\pi \right) ^2 } \right] \left[ \frac{9}{2} \, \sin{ \left( 5\,\pi\,t \right) } - 5\,\pi \cos{ \left( 5 \, \pi \, t \right) } \right] \right\} _0^1 \\ &= \left\{ \left( \frac{1000 + 3\,\pi ^2}{4} \right) t^3 + \left[ \frac{4\,\mathrm{e}^{\frac{9}{2}\,t}}{81 + 100\,\pi^2} \right] \left[ \left( \frac{81 + 100\,\pi ^2}{4} \right) \cos{ \left( 5\,\pi\,t \right) } \right] \right\} _0^1 \\ &= \left[ \left( \frac{1000 + 3\,\pi ^2}{4} \right) t^3 + \mathrm{e}^{\frac{9}{2}\,t} \cos{ \left( 5\,\pi\,t \right) } \right] _0^1 \\ &= \frac{1000 + 3\,\pi ^2}{4} - \mathrm{e}^{\frac{9}{2}} - 1 \\ &= \frac{996 + 3\,\pi ^2 - 4\,\mathrm{e}^{\frac{9}{2}}}{4} \\ &\approx 166.385\,072 \end{align*}$
 
Physics news on Phys.org
Assuming that the integral is independent of the path (which you would need to do since no path is specified) another good choice would be the line, along the x-axis, from (0, 0, 0) to (5, 0, 0) then the line, parallel to the y-axis, from (5, 0, 0) to (5, 1/2, 0), then along the line, parallel to the z-axis, from (5, 1/2, 0) to (5, 1/2, pi/2).

On the first part, only x changes so dy and dz are 0. The integral becomes
\int_0^5 6x^2 dx= \left[2x^3\right]_0^5= 250.

On the second part, only y changes so dx and dz are 0. x is the constant, 5, and z is 0. The integral becomes \int_0^{1/2} 9e^{9y}dy= \left[e^{9y}\right]_0^{1/2}= e^{9/2}- 1.

On the third part, only z changes so dx and dy are 0. x is the constant, 5, and y is the constant, 1/2. The integral becomes \int_0^{\pi/2} 6z+ 10e^{9/2} sin(10z)dz= \left[3z^2- e^{9/2}cos(10z)\right]_0^{\pi/2}= \frac{3\pi^2}{4}+ 2e^{9/2}.

The original integral is the sum of those, 249+ \frac{3\pi^2}{4}+ 3e^{9/2}.

(Better check my arithmetic.)
 
Last edited by a moderator:
[FONT=MathJax_Size1]Of course, if the integral is independent of the path then the integrand, [math]6x^2 dx+ (6z^2+ 9e^{9y}cos(10z))dy+ (12yz- 10e^{9y} sin(10z)dz[/math], must be "exact"- that is, there exist some differentiable function, F(x, y, z), such that the differential is [math]dF= 6x^2 dx+ (6z^2+ 9e^{9y}cos(10z))dy+ (12yz- 10e^{9y} sin(10z)dz[/math] and the integral is just F evaluated at the limits of integration.

In that case, we must have [math]\frac{\partial F}{\partial x}= 6x^2[/math] so that [math]F= 2x^3[/math] plus a "constant". But since the differentiation is with respect to x only, that "constant" can be an arbitrary function of y and z. That is, [math]F(x,y,z)= 2x^3+ G(y, z)[/math].

Differentiating with respect to y, [math]\frac{\partial F}{\partial y}= \frac{\partial G}{\partial y}[/math] and that must be equal to [math]6z^2+ 9e^{9y}cos(10z)[/math].

Integrating [math]\frac{\partial G}{\partial y}= 6z^2+ 9e^{9y}cos(10z)[/math] with respect to y, [math]G(y,z)= 6yz^2+ e^{9y}cos(10z)+ H(z)[/math] where, now, the "constant of integration" must be a differentiable function of z only.

So [math]F(x,y,z)= 2x^3+ 6yz^2+ e^{9y}cos(10z)+ H(z)[/math]. Differentiating that with respect to z, [math]\frac{\partial F}{\partial z}= 12yz- 10e^{9y}sin(10z)+ \frac{dH}{dz}= 12yz- 10e^{9y} sin(10z)[/math] so that \frac{dH}{dz}= 0 and H really is a constant. (And this integral really is independent of the path.)

We have [math]F(x,y,z)= 2x^3+ 6yz^2+ e^{9y}cos(10z)+ C[/math] and need to evaluate that at [math](0, 0, 0)[/math] and [math](5, 1/2, \pi/2)[/math].

[math]F(0,0,0)= 1+ C[/math] and [math]F(5,1/2,\pi/2)= 250+3\pi^2/4- e^{9/2}+ C[/math] so the integral is [math]249+ \frac{3\pi^2}{5}- e^{9/2}[/math]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K