MHB Luca's question via email about a line integral....

Click For Summary
The discussion centers on evaluating the line integral from the point (0,0,0) to (5, 1/2, π/2) using a straight-line path. The integral is transformed into a function of the parameter t, leading to a calculation involving polynomial and exponential terms. An alternative path is also considered, breaking the integral into three segments along the x, y, and z axes, yielding a total value of 249 + (3π²/4) + 3e^(9/2). The integrand is shown to be exact, indicating that the integral is independent of the path taken. The final evaluation confirms the integral's value as approximately 166.385072.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Evaluate the line integral $\displaystyle \begin{align*} I = \int_{(0,0,0)}^{\left( 5, \frac{1}{2}, \frac{\pi}{2} \right) }{ 6\,x^2\,\mathrm{d}x + \left[ 6\,z^2 + 9\,\mathrm{e}^{9\,y} \cos{ \left( 10\,z \right) } \right] \,\mathrm{d}y + \left[ 12\,y\,z - 10 \,\mathrm{e}^{9\,y}\sin{ \left( 10\,z \right) } \right] \,\mathrm{d}z } \end{align*}$

I am assuming that this line integral is along the straight line from $\displaystyle \begin{align*} (0,0,0) \end{align*}$ to $\displaystyle \begin{align*} \left( 5, \frac{1}{2}, \frac{\pi}{2} \right) \end{align*}$, which has equation $\displaystyle \begin{align*} \left( x, y, z \right) = t\left( 5, \frac{1}{2} , \frac{\pi}{2} \right) \, , \,t \in \left[ 0, 1 \right] \end{align*}$, so

$\displaystyle \begin{align*} x &= 5\,t \implies \mathrm{d}x = 5\,\mathrm{d}t \\ y &= \frac{1}{2}\,t \implies \mathrm{d}y = \frac{1}{2}\,\mathrm{d}t \\ z &= \frac{\pi}{2}\,t \implies \mathrm{d}z = \frac{\pi}{2}\,\mathrm{d}t \end{align*}$

and so the integral becomes

$\displaystyle \begin{align*} I &= \int_{t=0}^{t=1}{ 6\left( 5\,t \right) ^2 \cdot 5\,\mathrm{d}t + \left[ 6\left( \frac{\pi}{2}\,t \right) ^2 + 9\,\mathrm{e}^{9 \cdot \frac{1}{2}\,t} \cos{ \left( 10 \cdot \frac{\pi}{2}\,t \right) } \right] \cdot \frac{1}{2}\,\mathrm{d}t + \left[ 12 \cdot \frac{1}{2}\,t \cdot \frac{\pi}{2}\,t - 10 \,\mathrm{e}^{ 9 \cdot \frac{1}{2}\,t } \sin{ \left( 10\cdot \frac{\pi}{2}\,t \right) } \right] \cdot \frac{\pi}{2}\,\mathrm{d}t } \\ &= \int_0^1{ \left[ 750\,t^2 + \frac{3\,\pi ^2}{4}\,t^2 + \frac{9}{2}\,\mathrm{e}^{\frac{9}{2}\,t} \cos{ \left( 5\,\pi\,t \right) } + \frac{3\,\pi ^2}{2} \, t^2 - 5\,\pi\,\mathrm{e}^{\frac{9}{2}\,t}\sin{\left( 5\,\pi\,t \right) } \right] \,\mathrm{d}t } \\ &= \int_0^1{ \left[ \left( \frac{3000 + 9\,\pi^2}{4} \right) t^2 + \frac{9}{2}\,\mathrm{e}^{\frac{9}{2}\,t}\cos{\left( 5\,\pi\,t \right) } - 5\,\pi\,\mathrm{e}^{\frac{9}{2}\,t}\sin{ \left( 5\,\pi\,t \right) } \right] \,\mathrm{d}t } \\ &= \left\{ \left( \frac{1000 + 3\,\pi^2}{4} \right) t^3 + \frac{9}{2} \left[ \frac{\mathrm{e}^{\frac{9}{2}\,t}}{\left( \frac{9}{2} \right) ^2 + \left( 5\,\pi \right) ^2} \right] \left[ \frac{9}{2} \, \cos{ \left( 5\,\pi\,t \right) } + 5\,\pi \sin{ \left( 5\,\pi\,t \right) } \right] - 5\,\pi \left[ \frac{ \mathrm{e}^{ \frac{9}{2} \,t } }{ \left( \frac{9}{2} \right) ^2 + \left( 5\,\pi \right) ^2 } \right] \left[ \frac{9}{2} \, \sin{ \left( 5\,\pi\,t \right) } - 5\,\pi \cos{ \left( 5 \, \pi \, t \right) } \right] \right\} _0^1 \\ &= \left\{ \left( \frac{1000 + 3\,\pi ^2}{4} \right) t^3 + \left[ \frac{4\,\mathrm{e}^{\frac{9}{2}\,t}}{81 + 100\,\pi^2} \right] \left[ \left( \frac{81 + 100\,\pi ^2}{4} \right) \cos{ \left( 5\,\pi\,t \right) } \right] \right\} _0^1 \\ &= \left[ \left( \frac{1000 + 3\,\pi ^2}{4} \right) t^3 + \mathrm{e}^{\frac{9}{2}\,t} \cos{ \left( 5\,\pi\,t \right) } \right] _0^1 \\ &= \frac{1000 + 3\,\pi ^2}{4} - \mathrm{e}^{\frac{9}{2}} - 1 \\ &= \frac{996 + 3\,\pi ^2 - 4\,\mathrm{e}^{\frac{9}{2}}}{4} \\ &\approx 166.385\,072 \end{align*}$
 
Mathematics news on Phys.org
Assuming that the integral is independent of the path (which you would need to do since no path is specified) another good choice would be the line, along the x-axis, from (0, 0, 0) to (5, 0, 0) then the line, parallel to the y-axis, from (5, 0, 0) to (5, 1/2, 0), then along the line, parallel to the z-axis, from (5, 1/2, 0) to (5, 1/2, pi/2).

On the first part, only x changes so dy and dz are 0. The integral becomes
\int_0^5 6x^2 dx= \left[2x^3\right]_0^5= 250.

On the second part, only y changes so dx and dz are 0. x is the constant, 5, and z is 0. The integral becomes \int_0^{1/2} 9e^{9y}dy= \left[e^{9y}\right]_0^{1/2}= e^{9/2}- 1.

On the third part, only z changes so dx and dy are 0. x is the constant, 5, and y is the constant, 1/2. The integral becomes \int_0^{\pi/2} 6z+ 10e^{9/2} sin(10z)dz= \left[3z^2- e^{9/2}cos(10z)\right]_0^{\pi/2}= \frac{3\pi^2}{4}+ 2e^{9/2}.

The original integral is the sum of those, 249+ \frac{3\pi^2}{4}+ 3e^{9/2}.

(Better check my arithmetic.)
 
Last edited by a moderator:
[FONT=MathJax_Size1]Of course, if the integral is independent of the path then the integrand, [math]6x^2 dx+ (6z^2+ 9e^{9y}cos(10z))dy+ (12yz- 10e^{9y} sin(10z)dz[/math], must be "exact"- that is, there exist some differentiable function, F(x, y, z), such that the differential is [math]dF= 6x^2 dx+ (6z^2+ 9e^{9y}cos(10z))dy+ (12yz- 10e^{9y} sin(10z)dz[/math] and the integral is just F evaluated at the limits of integration.

In that case, we must have [math]\frac{\partial F}{\partial x}= 6x^2[/math] so that [math]F= 2x^3[/math] plus a "constant". But since the differentiation is with respect to x only, that "constant" can be an arbitrary function of y and z. That is, [math]F(x,y,z)= 2x^3+ G(y, z)[/math].

Differentiating with respect to y, [math]\frac{\partial F}{\partial y}= \frac{\partial G}{\partial y}[/math] and that must be equal to [math]6z^2+ 9e^{9y}cos(10z)[/math].

Integrating [math]\frac{\partial G}{\partial y}= 6z^2+ 9e^{9y}cos(10z)[/math] with respect to y, [math]G(y,z)= 6yz^2+ e^{9y}cos(10z)+ H(z)[/math] where, now, the "constant of integration" must be a differentiable function of z only.

So [math]F(x,y,z)= 2x^3+ 6yz^2+ e^{9y}cos(10z)+ H(z)[/math]. Differentiating that with respect to z, [math]\frac{\partial F}{\partial z}= 12yz- 10e^{9y}sin(10z)+ \frac{dH}{dz}= 12yz- 10e^{9y} sin(10z)[/math] so that \frac{dH}{dz}= 0 and H really is a constant. (And this integral really is independent of the path.)

We have [math]F(x,y,z)= 2x^3+ 6yz^2+ e^{9y}cos(10z)+ C[/math] and need to evaluate that at [math](0, 0, 0)[/math] and [math](5, 1/2, \pi/2)[/math].

[math]F(0,0,0)= 1+ C[/math] and [math]F(5,1/2,\pi/2)= 250+3\pi^2/4- e^{9/2}+ C[/math] so the integral is [math]249+ \frac{3\pi^2}{5}- e^{9/2}[/math]