MHB Lulu M's question at Yahoo Answers (Third order linear differential equation)

AI Thread Summary
The discussion focuses on transforming a third order linear differential equation into a system of first order equations. The equation is expressed in terms of a matrix A, where the derivatives of y are represented as a vector. The characteristic equation for the matrix A is derived, leading to the determination of its eigenvalues. The transformation and eigenvalue equation are crucial for understanding the behavior of the original differential equation. This process highlights the relationship between the original equation and its characteristic polynomial.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Consider the third order linear differential equation (1) ay′′′ +by′′ +cy′ +dy = 0

1) Transform Equation (1) to a system of first order equations of the form x′ = Ax, where x ∈ R^3;

2) Find the equation that determines the eigenvalues of the coefficient matrix A; and show that this equation is the characteristic equation of (1).

Here is a link to the question:

Third order linear differential equation? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Lulu M,

$1)$ The equation has order three, so $a\neq 0$. We can expresss: $$y'''=-\dfrac{d}{a}y-\dfrac{c}{a}y'-\dfrac{b}{a}y''\qquad (E)$$ Denoting $y_1=y,y_2=y',y_3=y''$ and using $(E)$: $$\left \{ \begin{matrix}\begin{aligned}
&y'_1=y'=y_2\\&y'_2=y''=y_3\\&y'_3=y'''=-\dfrac{d}{a}y_1-\dfrac{c}{a}y_2-\dfrac{b}{a}y_3
\end{aligned}\end{matrix}\right.$$ Equivalently:

$$\begin{bmatrix}y'_1\\y'_2\\y'_3\end{bmatrix}=
\begin{bmatrix}{\;\;0}&{\;\;1}&{\;\;0}\\{\;\;0}&{ \;\;0}&{\;\;1}\\{-d/a}&{-c/a}&{-b/a}\end{bmatrix} \begin{bmatrix}y_1\\y_2\\y_3\end{bmatrix} \Leftrightarrow Y'=AY$$ $2)$ The equation that determines the eigenvalues of $A$ is: $$\begin{aligned}\det (A-\lambda I)&=\begin{vmatrix}{-\lambda}&{\;\;1}&{\;\;0}\\{\;\;0}&{-\lambda}&{\;\;1}\\{-\frac{d}{a}}&{-\frac{c}{a}}&{-\frac{b}{a}-\lambda}\end{vmatrix}\\&=-\lambda^3-\dfrac{b}{a}\lambda^2-\dfrac{d}{a}-\dfrac{c}{a}\lambda=0\\&\Leftrightarrow a\lambda^3+b\lambda^2+c\lambda+d=0\end{aligned}$$ Now, we can conclude.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top