A M-Theory: Bosonic Fields - Need Help With Part III

  • A
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Fields M-theory
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Need help with part iii)

1624800784728.png


i) Under ##C \rightarrow C + d\Lambda##, and since ##dG = d^2C = 0 \implies d(\Lambda \wedge G \wedge G) = d\Lambda \wedge G \wedge G##, then neglecting the surface terms\begin{align*}
\int_D d\Lambda \wedge G \wedge G = \int_D d(\Lambda \wedge G \wedge G) &= \int_{\partial D} \Lambda \wedge G \wedge G = 0
\end{align*}ii) Varying with respect to the metric\begin{align*}
\delta S = \dfrac{1}{2}M^9 \int d^{11}x \left[\delta\sqrt{-g} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + \sqrt{-g} \delta R \right]
\end{align*}Using the classic trick for diagonalisable matrices ##\delta \sqrt{-g} = \dfrac{1}{2\sqrt{-g}} (-g) \mathrm{tr}(g^{-1} \delta g) = \dfrac{-1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu}##. Meanwhile for the Ricci scalar\begin{align*}

\delta R = \delta (g^{\mu \nu} R_{\mu \nu}) &= g^{\mu \nu} \delta R_{\mu \nu} + \delta g^{\mu \nu}R_{\mu \nu} \\

&= \nabla_{\mu} [g^{\rho \nu} \delta \Gamma^{\mu}_{\rho \nu} - g^{\mu \nu} \delta \Gamma^{\rho}_{\nu \rho}] + \delta g^{\mu \nu} R_{\mu \nu}

\end{align*}Therefore the Einstein equation should be\begin{align*}
\dfrac{-1}{2} g_{\alpha \beta} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + R_{\alpha \beta} &= 0 \\

\end{align*}Is this correct?

iii) Little progress made, hints appreciated.
 
Last edited:
Physics news on Phys.org
From which paper/book/lecture notes is this taken from?
 
ergospherical said:
Need help with part iii)
Therefore the Einstein equation should be \begin{align*}<br /> \dfrac{-1}{2} g_{\alpha \beta} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + R_{\alpha \beta} &amp;= 0 \\<br /> \end{align*} Is this correct?
No. The field equation should be of the form R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R \propto T_{\mu\nu}(G), where, T_{\mu\nu}(G) is the energy-momentum tensor of the 4-form field G. Try to practise with the action S = \int d^{4}x \sqrt{-g} \left( R - \frac{1}{4}F^{2}\right), where F^{2} = F_{\mu\nu}F^{\mu\nu} = g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma} .

ergospherical said:
iii) Little progress made, hints appreciated.
The relevant part of the action is - \frac{1}{2(4!)}\int d^{11}x \ \sqrt{-g} \ G^{2} - \frac{1}{6} \int C \wedge dC \wedge dC . For the first integral, the variation gives you - \frac{1}{4!} \int d^{11} \sqrt{-g} \ G^{\mu_{1} \cdots \mu_{4}} (d \delta C)_{\mu_{1} \cdots \mu_{4}}, which is same as - \int \ \star G \wedge d(\delta C) = - \int \ d (\delta C) \wedge \star G . Now, since d (\delta C \wedge \star G) = d(\delta C) \wedge \star G - \delta C \wedge d (\star G) , then the variation of the first integral (ignoring boundary integral) is - \int \ \delta C \wedge d \star G .
Similarly, for the second integral, you get -\frac{1}{6}\left( \int \delta C \wedge G \wedge G + 2 \int d(\delta C) \wedge C \wedge G \right) . Integrating the second term by parts, the result of the variation becomes - \frac{3}{6} \int \delta C \wedge G \wedge G . Thus, the vanishing variation of the action with respect to the 3-form C gives \int \delta C \wedge \left( d \star G + \frac{1}{2} G \wedge G \right) = 0. So, for arbitrary 3-form \delta C, you get d \star G + \frac{1}{2} G \wedge G = 0.
 
  • Like
  • Love
Likes ergospherical and vanhees71
samalkhaiat said:
Try to practise with the action S = \int d^{4}x \sqrt{-g} \left( R - \frac{1}{4}F^{2}\right), where ##F^{2} = F_{\mu\nu}F^{\mu\nu} = g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma}##
I will re-write\begin{align*}
S = \int d^4 x \sqrt{-g} \left( g^{\mu \nu} R_{\mu \nu} - \dfrac{1}{4} g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma} \right)

\end{align*}then vary ##S## with respect to the metric,\begin{align*}
\delta S &= \int d^4 x \left( R- \dfrac{1}{4}F^2 \right)\delta \sqrt{-g} + \int d^4 x \sqrt{-g} \left( \delta R - \dfrac{1}{4} F_{\mu\nu}F_{\rho\sigma} \delta(g^{\mu\rho}g^{\nu\sigma})\right)
\end{align*}We have the results:\begin{align*}
\delta \sqrt{-g} &= -\dfrac{1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu} \\ \\

\delta R &= \delta (g^{\mu \nu} R_{\mu \nu}) = \nabla_{\mu} [g^{\rho \nu} \delta \Gamma^{\mu}_{\rho \nu} - g^{\mu \nu} \delta \Gamma^{\rho}_{\nu \rho}] + \delta g^{\mu \nu} R_{\mu \nu} \\ \\

\delta(g^{\mu\rho}g^{\nu\sigma}) &= g^{\mu \rho} \delta g^{\nu \sigma} + g^{\nu \sigma} \delta g^{\mu \rho}

\end{align*}Ignoring the total derivative using the divergence theorem, the second integral becomes\begin{align*}
I_2 &= \int d^4 x \sqrt{-g} \left( \delta g^{\mu \nu} R_{\mu \nu} -\dfrac{1}{4} F_{\mu\nu}F_{\rho\sigma}(g^{\mu \rho} \delta g^{\nu \sigma} + g^{\nu \sigma} \delta g^{\mu \rho}) \right) \\

&= \int d^4 x \sqrt{-g} \left( R_{\mu \nu} -\dfrac{1}{4} {F^{\rho}}_{\mu}F_{\rho\nu} -\dfrac{1}{4} {F_{\mu}}^{\sigma}F_{\nu\sigma} \right)\delta g^{\mu \nu}
\end{align*}due to the antisymmetry of ##F## it follows that ##{F^{\rho}}_{\mu}F_{\rho\nu} = {F_{\mu}}^{\rho} F_{\nu \rho}##, hence putting ##\delta S = 0## gives\begin{align*}
-\dfrac{1}{2} g_{\mu \nu} \left( R - \frac{1}{4}F^2 \right) + R_{\mu \nu} -\frac{1}{2} {F_{\mu}}^{\rho}F_{\nu\rho} = 0 \\ \\
\end{align*}which may be rearranged to \begin{align*}
R_{\mu \nu} - \frac{1}{2} Rg_{\mu \nu} &= \dfrac{1}{2} \left( {F_{\mu}}^{\rho}F_{\nu\rho} - \frac{1}{4} g_{\mu \nu} F^2 \right)
\end{align*}which does appear to be the stress energy tensor ##T_{\mu \nu}(F)## up to perhaps an erroneous proportionality constant?

samalkhaiat said:
- \frac{1}{4!} \int d^{11} \sqrt{-g} \ G^{\mu_{1} \cdots \mu_{4}} (d \delta C)_{\mu_{1} \cdots \mu_{4}}, which is same as - \int \ \star G \wedge d(\delta C) = - \int \ d (\delta C) \wedge \star G .
I'm having some trouble with this part. Defining the tensor ##\epsilon_{\mu_1 \dots \mu_{11}} = \sqrt{-g} [\mu_1 \dots \mu_{11}]## such that the volume element is ##\boldsymbol{\epsilon} = \epsilon_{1\dots 11} d^{11}x = \sqrt{-g} d^{11} x##, \begin{align*}
\int {\star G} \wedge d(\delta C) &= \int d^{11}x \dfrac{11!}{4! 7!} (\star G)_{[1\dots 7} d(\delta C)_{8\dots 11]} \\

&= \int d^{11}x \dfrac{11!}{4! 7!} \dfrac{1}{7!} \epsilon_{[1\dots 7| \alpha \beta \gamma \delta} G^{\alpha \beta \gamma \delta} (d\delta C)_{|8\dots 11]}
\end{align*}I'm not sure if there's an identity I could use to tidy up the antisymmetrisation?
 
Last edited:
ergospherical said:
I'm having some trouble with this part. Defining the tensor ##\epsilon_{\mu_1 \dots \mu_{11}} = \sqrt{-g} [\mu_1 \dots \mu_{11}]## such that the volume element is ##\boldsymbol{\epsilon} = \epsilon_{1\dots 11} d^{11}x = \sqrt{-g} d^{11} x##, \begin{align*}
\int {\star G} \wedge d(\delta C) &= \int d^{11}x \dfrac{11!}{4! 7!} (\star G)_{[1\dots 7} d(\delta C)_{8\dots 11]} \\

&= \int d^{11}x \dfrac{11!}{4! 7!} \dfrac{1}{7!} \epsilon_{[1\dots 7| \alpha \beta \gamma \delta} G^{\alpha \beta \gamma \delta} (d\delta C)_{|8\dots 11]}
\end{align*}I'm not sure if there's an identity I could use to tidy up the antisymmetrisation?
That mess does not take you anywhere. The proof of following identity can be found in many textbooks \alpha \wedge \star \beta = \beta \wedge \star \alpha = (\alpha , \beta) \ \epsilon , where (\alpha , \beta) (x) = \frac{1}{p!} \alpha_{\mu_{1} \cdots \mu_{p}}(x) \beta^{\mu_{1} \cdots \mu_{p}}(x) ,\epsilon (x) = \sqrt{-g(x)} dx^{0} \wedge \cdots \wedge dx^{n-1} \equiv \sqrt{-g(x)} \ d^{n}x .
 
  • Like
Likes ergospherical
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top