A M-Theory: Bosonic Fields - Need Help With Part III

  • A
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Fields M-theory
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Need help with part iii)

1624800784728.png


i) Under ##C \rightarrow C + d\Lambda##, and since ##dG = d^2C = 0 \implies d(\Lambda \wedge G \wedge G) = d\Lambda \wedge G \wedge G##, then neglecting the surface terms\begin{align*}
\int_D d\Lambda \wedge G \wedge G = \int_D d(\Lambda \wedge G \wedge G) &= \int_{\partial D} \Lambda \wedge G \wedge G = 0
\end{align*}ii) Varying with respect to the metric\begin{align*}
\delta S = \dfrac{1}{2}M^9 \int d^{11}x \left[\delta\sqrt{-g} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + \sqrt{-g} \delta R \right]
\end{align*}Using the classic trick for diagonalisable matrices ##\delta \sqrt{-g} = \dfrac{1}{2\sqrt{-g}} (-g) \mathrm{tr}(g^{-1} \delta g) = \dfrac{-1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu}##. Meanwhile for the Ricci scalar\begin{align*}

\delta R = \delta (g^{\mu \nu} R_{\mu \nu}) &= g^{\mu \nu} \delta R_{\mu \nu} + \delta g^{\mu \nu}R_{\mu \nu} \\

&= \nabla_{\mu} [g^{\rho \nu} \delta \Gamma^{\mu}_{\rho \nu} - g^{\mu \nu} \delta \Gamma^{\rho}_{\nu \rho}] + \delta g^{\mu \nu} R_{\mu \nu}

\end{align*}Therefore the Einstein equation should be\begin{align*}
\dfrac{-1}{2} g_{\alpha \beta} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + R_{\alpha \beta} &= 0 \\

\end{align*}Is this correct?

iii) Little progress made, hints appreciated.
 
Last edited:
Physics news on Phys.org
From which paper/book/lecture notes is this taken from?
 
ergospherical said:
Need help with part iii)
Therefore the Einstein equation should be \begin{align*}<br /> \dfrac{-1}{2} g_{\alpha \beta} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + R_{\alpha \beta} &amp;= 0 \\<br /> \end{align*} Is this correct?
No. The field equation should be of the form R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R \propto T_{\mu\nu}(G), where, T_{\mu\nu}(G) is the energy-momentum tensor of the 4-form field G. Try to practise with the action S = \int d^{4}x \sqrt{-g} \left( R - \frac{1}{4}F^{2}\right), where F^{2} = F_{\mu\nu}F^{\mu\nu} = g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma} .

ergospherical said:
iii) Little progress made, hints appreciated.
The relevant part of the action is - \frac{1}{2(4!)}\int d^{11}x \ \sqrt{-g} \ G^{2} - \frac{1}{6} \int C \wedge dC \wedge dC . For the first integral, the variation gives you - \frac{1}{4!} \int d^{11} \sqrt{-g} \ G^{\mu_{1} \cdots \mu_{4}} (d \delta C)_{\mu_{1} \cdots \mu_{4}}, which is same as - \int \ \star G \wedge d(\delta C) = - \int \ d (\delta C) \wedge \star G . Now, since d (\delta C \wedge \star G) = d(\delta C) \wedge \star G - \delta C \wedge d (\star G) , then the variation of the first integral (ignoring boundary integral) is - \int \ \delta C \wedge d \star G .
Similarly, for the second integral, you get -\frac{1}{6}\left( \int \delta C \wedge G \wedge G + 2 \int d(\delta C) \wedge C \wedge G \right) . Integrating the second term by parts, the result of the variation becomes - \frac{3}{6} \int \delta C \wedge G \wedge G . Thus, the vanishing variation of the action with respect to the 3-form C gives \int \delta C \wedge \left( d \star G + \frac{1}{2} G \wedge G \right) = 0. So, for arbitrary 3-form \delta C, you get d \star G + \frac{1}{2} G \wedge G = 0.
 
  • Like
  • Love
Likes ergospherical and vanhees71
samalkhaiat said:
Try to practise with the action S = \int d^{4}x \sqrt{-g} \left( R - \frac{1}{4}F^{2}\right), where ##F^{2} = F_{\mu\nu}F^{\mu\nu} = g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma}##
I will re-write\begin{align*}
S = \int d^4 x \sqrt{-g} \left( g^{\mu \nu} R_{\mu \nu} - \dfrac{1}{4} g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma} \right)

\end{align*}then vary ##S## with respect to the metric,\begin{align*}
\delta S &= \int d^4 x \left( R- \dfrac{1}{4}F^2 \right)\delta \sqrt{-g} + \int d^4 x \sqrt{-g} \left( \delta R - \dfrac{1}{4} F_{\mu\nu}F_{\rho\sigma} \delta(g^{\mu\rho}g^{\nu\sigma})\right)
\end{align*}We have the results:\begin{align*}
\delta \sqrt{-g} &= -\dfrac{1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu} \\ \\

\delta R &= \delta (g^{\mu \nu} R_{\mu \nu}) = \nabla_{\mu} [g^{\rho \nu} \delta \Gamma^{\mu}_{\rho \nu} - g^{\mu \nu} \delta \Gamma^{\rho}_{\nu \rho}] + \delta g^{\mu \nu} R_{\mu \nu} \\ \\

\delta(g^{\mu\rho}g^{\nu\sigma}) &= g^{\mu \rho} \delta g^{\nu \sigma} + g^{\nu \sigma} \delta g^{\mu \rho}

\end{align*}Ignoring the total derivative using the divergence theorem, the second integral becomes\begin{align*}
I_2 &= \int d^4 x \sqrt{-g} \left( \delta g^{\mu \nu} R_{\mu \nu} -\dfrac{1}{4} F_{\mu\nu}F_{\rho\sigma}(g^{\mu \rho} \delta g^{\nu \sigma} + g^{\nu \sigma} \delta g^{\mu \rho}) \right) \\

&= \int d^4 x \sqrt{-g} \left( R_{\mu \nu} -\dfrac{1}{4} {F^{\rho}}_{\mu}F_{\rho\nu} -\dfrac{1}{4} {F_{\mu}}^{\sigma}F_{\nu\sigma} \right)\delta g^{\mu \nu}
\end{align*}due to the antisymmetry of ##F## it follows that ##{F^{\rho}}_{\mu}F_{\rho\nu} = {F_{\mu}}^{\rho} F_{\nu \rho}##, hence putting ##\delta S = 0## gives\begin{align*}
-\dfrac{1}{2} g_{\mu \nu} \left( R - \frac{1}{4}F^2 \right) + R_{\mu \nu} -\frac{1}{2} {F_{\mu}}^{\rho}F_{\nu\rho} = 0 \\ \\
\end{align*}which may be rearranged to \begin{align*}
R_{\mu \nu} - \frac{1}{2} Rg_{\mu \nu} &= \dfrac{1}{2} \left( {F_{\mu}}^{\rho}F_{\nu\rho} - \frac{1}{4} g_{\mu \nu} F^2 \right)
\end{align*}which does appear to be the stress energy tensor ##T_{\mu \nu}(F)## up to perhaps an erroneous proportionality constant?

samalkhaiat said:
- \frac{1}{4!} \int d^{11} \sqrt{-g} \ G^{\mu_{1} \cdots \mu_{4}} (d \delta C)_{\mu_{1} \cdots \mu_{4}}, which is same as - \int \ \star G \wedge d(\delta C) = - \int \ d (\delta C) \wedge \star G .
I'm having some trouble with this part. Defining the tensor ##\epsilon_{\mu_1 \dots \mu_{11}} = \sqrt{-g} [\mu_1 \dots \mu_{11}]## such that the volume element is ##\boldsymbol{\epsilon} = \epsilon_{1\dots 11} d^{11}x = \sqrt{-g} d^{11} x##, \begin{align*}
\int {\star G} \wedge d(\delta C) &= \int d^{11}x \dfrac{11!}{4! 7!} (\star G)_{[1\dots 7} d(\delta C)_{8\dots 11]} \\

&= \int d^{11}x \dfrac{11!}{4! 7!} \dfrac{1}{7!} \epsilon_{[1\dots 7| \alpha \beta \gamma \delta} G^{\alpha \beta \gamma \delta} (d\delta C)_{|8\dots 11]}
\end{align*}I'm not sure if there's an identity I could use to tidy up the antisymmetrisation?
 
Last edited:
ergospherical said:
I'm having some trouble with this part. Defining the tensor ##\epsilon_{\mu_1 \dots \mu_{11}} = \sqrt{-g} [\mu_1 \dots \mu_{11}]## such that the volume element is ##\boldsymbol{\epsilon} = \epsilon_{1\dots 11} d^{11}x = \sqrt{-g} d^{11} x##, \begin{align*}
\int {\star G} \wedge d(\delta C) &= \int d^{11}x \dfrac{11!}{4! 7!} (\star G)_{[1\dots 7} d(\delta C)_{8\dots 11]} \\

&= \int d^{11}x \dfrac{11!}{4! 7!} \dfrac{1}{7!} \epsilon_{[1\dots 7| \alpha \beta \gamma \delta} G^{\alpha \beta \gamma \delta} (d\delta C)_{|8\dots 11]}
\end{align*}I'm not sure if there's an identity I could use to tidy up the antisymmetrisation?
That mess does not take you anywhere. The proof of following identity can be found in many textbooks \alpha \wedge \star \beta = \beta \wedge \star \alpha = (\alpha , \beta) \ \epsilon , where (\alpha , \beta) (x) = \frac{1}{p!} \alpha_{\mu_{1} \cdots \mu_{p}}(x) \beta^{\mu_{1} \cdots \mu_{p}}(x) ,\epsilon (x) = \sqrt{-g(x)} dx^{0} \wedge \cdots \wedge dx^{n-1} \equiv \sqrt{-g(x)} \ d^{n}x .
 
  • Like
Likes ergospherical
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top