M-Theory: Bosonic Fields - Need Help With Part III

  • Context: Graduate 
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Fields M-theory
Click For Summary

Discussion Overview

The discussion revolves around the derivation and understanding of equations related to M-Theory, specifically focusing on bosonic fields and the Einstein equations. Participants are examining variations of the action, metric variations, and the implications for field equations in a higher-dimensional context.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a derivation involving the variation of the action and proposes a form for the Einstein equation, questioning its correctness.
  • Another participant challenges the proposed form of the Einstein equation, suggesting it should relate to the energy-momentum tensor of the 4-form field G.
  • A different participant provides insights into the variation of the action, detailing the contributions from different terms and leading to a condition involving the 3-form C.
  • There are discussions about specific integrals and identities related to the antisymmetrization of tensors, with one participant expressing uncertainty about the application of certain identities.
  • Some participants reference specific examples from Prof Tong's materials, indicating a shared context for the discussion.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correctness of the proposed Einstein equation. There are competing views on the appropriate form of the equations and the implications of the variations being discussed.

Contextual Notes

Participants mention specific mathematical steps and identities that may depend on definitions or assumptions not fully articulated in the discussion. There is also a reliance on prior knowledge from specific lectures or texts, which may limit the clarity for those unfamiliar with the context.

Who May Find This Useful

This discussion may be of interest to those studying advanced theoretical physics, particularly in the context of M-Theory, field theory, and higher-dimensional models.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Need help with part iii)

1624800784728.png


i) Under ##C \rightarrow C + d\Lambda##, and since ##dG = d^2C = 0 \implies d(\Lambda \wedge G \wedge G) = d\Lambda \wedge G \wedge G##, then neglecting the surface terms\begin{align*}
\int_D d\Lambda \wedge G \wedge G = \int_D d(\Lambda \wedge G \wedge G) &= \int_{\partial D} \Lambda \wedge G \wedge G = 0
\end{align*}ii) Varying with respect to the metric\begin{align*}
\delta S = \dfrac{1}{2}M^9 \int d^{11}x \left[\delta\sqrt{-g} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + \sqrt{-g} \delta R \right]
\end{align*}Using the classic trick for diagonalisable matrices ##\delta \sqrt{-g} = \dfrac{1}{2\sqrt{-g}} (-g) \mathrm{tr}(g^{-1} \delta g) = \dfrac{-1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu}##. Meanwhile for the Ricci scalar\begin{align*}

\delta R = \delta (g^{\mu \nu} R_{\mu \nu}) &= g^{\mu \nu} \delta R_{\mu \nu} + \delta g^{\mu \nu}R_{\mu \nu} \\

&= \nabla_{\mu} [g^{\rho \nu} \delta \Gamma^{\mu}_{\rho \nu} - g^{\mu \nu} \delta \Gamma^{\rho}_{\nu \rho}] + \delta g^{\mu \nu} R_{\mu \nu}

\end{align*}Therefore the Einstein equation should be\begin{align*}
\dfrac{-1}{2} g_{\alpha \beta} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + R_{\alpha \beta} &= 0 \\

\end{align*}Is this correct?

iii) Little progress made, hints appreciated.
 
Last edited:
Physics news on Phys.org
From which paper/book/lecture notes is this taken from?
 
ergospherical said:
Need help with part iii)
Therefore the Einstein equation should be \begin{align*}<br /> \dfrac{-1}{2} g_{\alpha \beta} \left(R - \dfrac{1}{48}G_{\mu \nu \rho \sigma}G^{\mu \nu \rho \sigma} \right) + R_{\alpha \beta} &amp;= 0 \\<br /> \end{align*} Is this correct?
No. The field equation should be of the form R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R \propto T_{\mu\nu}(G), where, T_{\mu\nu}(G) is the energy-momentum tensor of the 4-form field G. Try to practise with the action S = \int d^{4}x \sqrt{-g} \left( R - \frac{1}{4}F^{2}\right), where F^{2} = F_{\mu\nu}F^{\mu\nu} = g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma} .

ergospherical said:
iii) Little progress made, hints appreciated.
The relevant part of the action is - \frac{1}{2(4!)}\int d^{11}x \ \sqrt{-g} \ G^{2} - \frac{1}{6} \int C \wedge dC \wedge dC . For the first integral, the variation gives you - \frac{1}{4!} \int d^{11} \sqrt{-g} \ G^{\mu_{1} \cdots \mu_{4}} (d \delta C)_{\mu_{1} \cdots \mu_{4}}, which is same as - \int \ \star G \wedge d(\delta C) = - \int \ d (\delta C) \wedge \star G . Now, since d (\delta C \wedge \star G) = d(\delta C) \wedge \star G - \delta C \wedge d (\star G) , then the variation of the first integral (ignoring boundary integral) is - \int \ \delta C \wedge d \star G .
Similarly, for the second integral, you get -\frac{1}{6}\left( \int \delta C \wedge G \wedge G + 2 \int d(\delta C) \wedge C \wedge G \right) . Integrating the second term by parts, the result of the variation becomes - \frac{3}{6} \int \delta C \wedge G \wedge G . Thus, the vanishing variation of the action with respect to the 3-form C gives \int \delta C \wedge \left( d \star G + \frac{1}{2} G \wedge G \right) = 0. So, for arbitrary 3-form \delta C, you get d \star G + \frac{1}{2} G \wedge G = 0.
 
  • Like
  • Love
Likes   Reactions: ergospherical and vanhees71
samalkhaiat said:
Try to practise with the action S = \int d^{4}x \sqrt{-g} \left( R - \frac{1}{4}F^{2}\right), where ##F^{2} = F_{\mu\nu}F^{\mu\nu} = g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma}##
I will re-write\begin{align*}
S = \int d^4 x \sqrt{-g} \left( g^{\mu \nu} R_{\mu \nu} - \dfrac{1}{4} g^{\mu\rho}g^{\nu\sigma}F_{\mu\nu}F_{\rho\sigma} \right)

\end{align*}then vary ##S## with respect to the metric,\begin{align*}
\delta S &= \int d^4 x \left( R- \dfrac{1}{4}F^2 \right)\delta \sqrt{-g} + \int d^4 x \sqrt{-g} \left( \delta R - \dfrac{1}{4} F_{\mu\nu}F_{\rho\sigma} \delta(g^{\mu\rho}g^{\nu\sigma})\right)
\end{align*}We have the results:\begin{align*}
\delta \sqrt{-g} &= -\dfrac{1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu} \\ \\

\delta R &= \delta (g^{\mu \nu} R_{\mu \nu}) = \nabla_{\mu} [g^{\rho \nu} \delta \Gamma^{\mu}_{\rho \nu} - g^{\mu \nu} \delta \Gamma^{\rho}_{\nu \rho}] + \delta g^{\mu \nu} R_{\mu \nu} \\ \\

\delta(g^{\mu\rho}g^{\nu\sigma}) &= g^{\mu \rho} \delta g^{\nu \sigma} + g^{\nu \sigma} \delta g^{\mu \rho}

\end{align*}Ignoring the total derivative using the divergence theorem, the second integral becomes\begin{align*}
I_2 &= \int d^4 x \sqrt{-g} \left( \delta g^{\mu \nu} R_{\mu \nu} -\dfrac{1}{4} F_{\mu\nu}F_{\rho\sigma}(g^{\mu \rho} \delta g^{\nu \sigma} + g^{\nu \sigma} \delta g^{\mu \rho}) \right) \\

&= \int d^4 x \sqrt{-g} \left( R_{\mu \nu} -\dfrac{1}{4} {F^{\rho}}_{\mu}F_{\rho\nu} -\dfrac{1}{4} {F_{\mu}}^{\sigma}F_{\nu\sigma} \right)\delta g^{\mu \nu}
\end{align*}due to the antisymmetry of ##F## it follows that ##{F^{\rho}}_{\mu}F_{\rho\nu} = {F_{\mu}}^{\rho} F_{\nu \rho}##, hence putting ##\delta S = 0## gives\begin{align*}
-\dfrac{1}{2} g_{\mu \nu} \left( R - \frac{1}{4}F^2 \right) + R_{\mu \nu} -\frac{1}{2} {F_{\mu}}^{\rho}F_{\nu\rho} = 0 \\ \\
\end{align*}which may be rearranged to \begin{align*}
R_{\mu \nu} - \frac{1}{2} Rg_{\mu \nu} &= \dfrac{1}{2} \left( {F_{\mu}}^{\rho}F_{\nu\rho} - \frac{1}{4} g_{\mu \nu} F^2 \right)
\end{align*}which does appear to be the stress energy tensor ##T_{\mu \nu}(F)## up to perhaps an erroneous proportionality constant?

samalkhaiat said:
- \frac{1}{4!} \int d^{11} \sqrt{-g} \ G^{\mu_{1} \cdots \mu_{4}} (d \delta C)_{\mu_{1} \cdots \mu_{4}}, which is same as - \int \ \star G \wedge d(\delta C) = - \int \ d (\delta C) \wedge \star G .
I'm having some trouble with this part. Defining the tensor ##\epsilon_{\mu_1 \dots \mu_{11}} = \sqrt{-g} [\mu_1 \dots \mu_{11}]## such that the volume element is ##\boldsymbol{\epsilon} = \epsilon_{1\dots 11} d^{11}x = \sqrt{-g} d^{11} x##, \begin{align*}
\int {\star G} \wedge d(\delta C) &= \int d^{11}x \dfrac{11!}{4! 7!} (\star G)_{[1\dots 7} d(\delta C)_{8\dots 11]} \\

&= \int d^{11}x \dfrac{11!}{4! 7!} \dfrac{1}{7!} \epsilon_{[1\dots 7| \alpha \beta \gamma \delta} G^{\alpha \beta \gamma \delta} (d\delta C)_{|8\dots 11]}
\end{align*}I'm not sure if there's an identity I could use to tidy up the antisymmetrisation?
 
Last edited:
ergospherical said:
I'm having some trouble with this part. Defining the tensor ##\epsilon_{\mu_1 \dots \mu_{11}} = \sqrt{-g} [\mu_1 \dots \mu_{11}]## such that the volume element is ##\boldsymbol{\epsilon} = \epsilon_{1\dots 11} d^{11}x = \sqrt{-g} d^{11} x##, \begin{align*}
\int {\star G} \wedge d(\delta C) &= \int d^{11}x \dfrac{11!}{4! 7!} (\star G)_{[1\dots 7} d(\delta C)_{8\dots 11]} \\

&= \int d^{11}x \dfrac{11!}{4! 7!} \dfrac{1}{7!} \epsilon_{[1\dots 7| \alpha \beta \gamma \delta} G^{\alpha \beta \gamma \delta} (d\delta C)_{|8\dots 11]}
\end{align*}I'm not sure if there's an identity I could use to tidy up the antisymmetrisation?
That mess does not take you anywhere. The proof of following identity can be found in many textbooks \alpha \wedge \star \beta = \beta \wedge \star \alpha = (\alpha , \beta) \ \epsilon , where (\alpha , \beta) (x) = \frac{1}{p!} \alpha_{\mu_{1} \cdots \mu_{p}}(x) \beta^{\mu_{1} \cdots \mu_{p}}(x) ,\epsilon (x) = \sqrt{-g(x)} dx^{0} \wedge \cdots \wedge dx^{n-1} \equiv \sqrt{-g(x)} \ d^{n}x .
 
  • Like
Likes   Reactions: ergospherical

Similar threads

  • · Replies 3 ·
Replies
3
Views
620
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
2K
  • · Replies 1 ·
Replies
1
Views
824
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K