What is the length of a curve defined by a logarithmic function?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Curve Length
Click For Summary
SUMMARY

The discussion focuses on calculating the length of a curve defined by the logarithmic function \( f(x) = \ln(\sin{x}) \) over the interval \( \frac{\pi}{6} \le x \le \frac{\pi}{2} \). The derivative \( f'(x) = \cot{x} \) is used to derive the arc length formula \( L = \int_{\pi/6}^{\pi/2} \sqrt{1 + \cot^2{x}} \, dx \), which simplifies to \( L = \int_{\pi/6}^{\pi/2} \csc{x} \, dx \). The final result for the length of the curve is \( L = \ln(\sqrt{3} + 2) \), demonstrating the application of integral calculus in evaluating curve lengths.

PREREQUISITES
  • Understanding of integral calculus, specifically arc length calculations
  • Familiarity with logarithmic functions and their properties
  • Knowledge of trigonometric identities, particularly involving sine and cotangent
  • Experience with integration techniques, including partial fractions
NEXT STEPS
  • Study the derivation of the arc length formula \( L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx \)
  • Learn about the properties and applications of logarithmic functions in calculus
  • Explore trigonometric integrals, focusing on \( \csc{x} \) and its integration techniques
  • Investigate the use of partial fractions in solving complex integrals
USEFUL FOR

Mathematicians, calculus students, and educators looking to deepen their understanding of curve length calculations and integral techniques in trigonometric contexts.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\begin{align*}\displaystyle
f(x)&=\ln(\sin{x})\\
\frac{\pi}{6}& \le x \le \frac{\pi}{2}\\
\end{align*}$
$\begin{align*}\displaystyle
f^\prime(x)&=\cot{x}
\end{align*}$
so
$\begin{align*}\displaystyle
L&=\int_{\pi/6}^{\pi/2} \sqrt{1-
(\cot{x})^2} \,dx \\
\therefore L&=\Biggr|-\ln(|\csc(x)+\cot(x)|)\Biggr|_{\pi/6}^{\pi/2}\\
&=\ln{\sqrt(3)+2}
\end{align*}$

ok I used W|A to get the indefinit Integral but didn't know the steps
 
Physics news on Phys.org
karush said:
$\begin{align*}\displaystyle
f(x)&=\ln(\sin{x})\\
\frac{\pi}{6}& \le x \le \frac{\pi}{2}\\
\end{align*}$
$\begin{align*}\displaystyle
f^\prime(x)&=\cot{x}
\end{align*}$
so
$\begin{align*}\displaystyle
L&=\int_{\pi/6}^{\pi/2} \sqrt{1-
(\cot{x})^2} \,dx \\
\therefore L&=\Biggr|-\ln(|\csc(x)+\cot(x)|)\Biggr|_{\pi/6}^{\pi/2}\\
&=\ln{\sqrt(3)+2}
\end{align*}$

ok I used W|A to get the indefinit Integral but didn't know the steps

$\displaystyle L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{1 + \cot^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{\csc^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \cdot \dfrac{\csc{x}+\cot{x}}{\csc{x}+\cot{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \dfrac{\csc^2{x}+\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

$\displaystyle L = -\int_{\pi/6}^{\pi/2} \dfrac{-\csc^2{x}-\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

note the integrand has the form $\dfrac{u'}{u}$ ...
 
skeeter said:
$\displaystyle L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{1 + \cot^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{\csc^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \cdot \dfrac{\csc{x}+\cot{x}}{\csc{x}+\cot{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \dfrac{\csc^2{x}+\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

$\displaystyle L = -\int_{\pi/6}^{\pi/2} \dfrac{-\csc^2{x}-\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

note the integrand has the form $\dfrac{u'}{u}$ ...

A slightly easier integral evaluation:

$\displaystyle \begin{align*} L &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\csc{(x)}\,\mathrm{d}x} \\ &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{ \frac{1}{\sin{(x)}}\,\mathrm{d}x } \\ &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{ \frac{\sin{(x)}}{\sin^2{(x)}}\,\mathrm{d}x } \\ &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{ \frac{-\sin{(x)}}{\cos^2{(x)} - 1} \,\mathrm{d}x } \\ &= \int_{\frac{\sqrt{3}}{2}}^{0}{ \frac{1}{u^2 - 1}\,\mathrm{d}u } \textrm{ where } u = \cos{(x)} \implies \mathrm{d}u = -\sin{(x)}\,\mathrm{d}x \end{align*}$

which can now be solved with Partial Fractions.
 
always learn cool tricks here at MHB:cool:
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K