Magnetic field due to a long, straight wire

AI Thread Summary
The discussion centers on calculating the magnetic field around a long, straight wire using Ampere's law, leading to a discrepancy between a calculated current of 9.14 MA and a textbook value of 3.72 MA. The user expresses confusion over the differing results, suggesting that the textbook might be incorrect. Another participant proposes finding the distance from the wire that would yield a magnetic field of 91.4 T when the current is 3.72 MA. The conversation emphasizes the importance of verifying calculations and understanding the relationship between current, distance, and magnetic field strength. Ultimately, the focus remains on reconciling the differences in the current values and the resulting magnetic field calculations.
Meow12
Messages
46
Reaction score
20
Homework Statement
A magnetic field of 91.4 T has been achieved at the High Magnetic Field Laboratory in Dresden, Germany. Find the current needed to achieve such a field 2.00 cm from a long, straight wire.
Relevant Equations
Ampere's law: ##\displaystyle\oint\vec B\cdot d\vec l=\mu_0 I##
From Ampere's law, ##\displaystyle\oint\vec B\cdot d\vec l=\mu_0 I## where ##r## is the distance from the wire

##B\cdot 2\pi r=\mu_0 I##

##\displaystyle 91.4\times 2\pi\left(\frac{2}{100}\right)=4\pi\times 10^{-7} I##

##I=91.4\times 10^5\ A=9.14\ \rm{MA}##

But the answer given in the textbook is ##3.72\ \rm{MA}##. Where have I gone wrong?
 
Physics news on Phys.org
Your work and your numerical answer look good to me.
 
  • Like
Likes MatinSAR, Delta2 and Meow12
Thanks; I guess the textbook is wrong, then.
 
I also agree, but try to find the distance such that the total current is as textbook says.

I mean to find the distance from the wire such that at this distance the magnetic field is 91.4T when the wire carries 3.72MA
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top