issacnewton
- 1,035
- 37
Hi
I have to find the magnetic field at the center of a rotating sphere
which has unifrom charge density \rho on it. The sphere
is rotating with angular velocity \omega . The answer given
in the solution manual is
B= \frac{1}{3} \mu_o \rho \omega R^2
I didn't get this value. Let me present my work here. I first found the
magnetic field at the center of a disk, which has uniform charge density
\sigma on it. After this, I extend this to the solid sphere as
collection of disks. Now the magnetic field at the center of a ring of radius
r , is
B = \frac{\mu_o I r^2}{2(x^2+r^2)^{\frac{3}{2}}}
where x is the distance of some point on the axis of the ring from
the center of the ring. If the ring is rotating with angular velocity
\omega, then the current , I , is
I = \frac{q ' \omega}{2 \pi}
Now, if this ring is the part of a disk, then we have
q ' = \sigma (2\pi r) dr
plugging everything we have, the magnetic field due to a ring, which is
a part of the disk, at a distance x (from the center) on the axis of the ring is
dB= \frac{\mu_o \omega \sigma}{2} \,\, \frac{r^3 \, dr}{\left(x^2+r^2 \right)^{\frac{3}{2}}}
Now , we integrate this from r=0 to r=R , which is the radius of the
disk.
B= \frac{\mu_o \omega \sigma}{2}\,\, \int_0^R \frac{r^3 \, dr}{\left(x^2+r^2 \right)^{\frac{3}{2}}}
after integrating , I got the magnetic field , B , of the disk , at a distance
x from the center of the disk, on its axis
B= \frac{\mu_o \omega \sigma}{2}\,\, \left[ \frac{2x^2+R^2}{(x^2+R^2)^{\frac{1}{2}}} - 2x \right ]
Now , the sphere can be thought as a collection of disks. Let's consider the disk, at an angle
\theta from the z-axis. So the radius of the disk would be R \sin \theta.
The thickness of the disk would be R \,d \theta \, \sin \theta . I think I got the thickness
right. I am not sure about that. So the relationship between the surface charge density
on the disk and the volume charge density in the sphere is
\sigma = \rho \, R \,\, d\theta (\sin \theta)
So , dimensionally this makes sense. So plugging these values in the expression for
the magnetic field due to disk, I get
dB=\frac{\mu_o \omega }{2} (\rho R d \theta \sin \theta) \left[R(1+\cos^2 \theta) - 2R \cos \theta \right]
So we integrate this from \theta = 0 to \theta = \pi to cover the whole sphere.
And I get
B= \frac{4}{3} \mu_o \rho \omega R^2
But as I said earlier, the reas answer is given as
B=\frac{1}{3} \mu_o \rho \omega R^2
So where am I going wrong ?
I have to find the magnetic field at the center of a rotating sphere
which has unifrom charge density \rho on it. The sphere
is rotating with angular velocity \omega . The answer given
in the solution manual is
B= \frac{1}{3} \mu_o \rho \omega R^2
I didn't get this value. Let me present my work here. I first found the
magnetic field at the center of a disk, which has uniform charge density
\sigma on it. After this, I extend this to the solid sphere as
collection of disks. Now the magnetic field at the center of a ring of radius
r , is
B = \frac{\mu_o I r^2}{2(x^2+r^2)^{\frac{3}{2}}}
where x is the distance of some point on the axis of the ring from
the center of the ring. If the ring is rotating with angular velocity
\omega, then the current , I , is
I = \frac{q ' \omega}{2 \pi}
Now, if this ring is the part of a disk, then we have
q ' = \sigma (2\pi r) dr
plugging everything we have, the magnetic field due to a ring, which is
a part of the disk, at a distance x (from the center) on the axis of the ring is
dB= \frac{\mu_o \omega \sigma}{2} \,\, \frac{r^3 \, dr}{\left(x^2+r^2 \right)^{\frac{3}{2}}}
Now , we integrate this from r=0 to r=R , which is the radius of the
disk.
B= \frac{\mu_o \omega \sigma}{2}\,\, \int_0^R \frac{r^3 \, dr}{\left(x^2+r^2 \right)^{\frac{3}{2}}}
after integrating , I got the magnetic field , B , of the disk , at a distance
x from the center of the disk, on its axis
B= \frac{\mu_o \omega \sigma}{2}\,\, \left[ \frac{2x^2+R^2}{(x^2+R^2)^{\frac{1}{2}}} - 2x \right ]
Now , the sphere can be thought as a collection of disks. Let's consider the disk, at an angle
\theta from the z-axis. So the radius of the disk would be R \sin \theta.
The thickness of the disk would be R \,d \theta \, \sin \theta . I think I got the thickness
right. I am not sure about that. So the relationship between the surface charge density
on the disk and the volume charge density in the sphere is
\sigma = \rho \, R \,\, d\theta (\sin \theta)
So , dimensionally this makes sense. So plugging these values in the expression for
the magnetic field due to disk, I get
dB=\frac{\mu_o \omega }{2} (\rho R d \theta \sin \theta) \left[R(1+\cos^2 \theta) - 2R \cos \theta \right]
So we integrate this from \theta = 0 to \theta = \pi to cover the whole sphere.
And I get
B= \frac{4}{3} \mu_o \rho \omega R^2
But as I said earlier, the reas answer is given as
B=\frac{1}{3} \mu_o \rho \omega R^2
So where am I going wrong ?