I Magnetic flux through a superconducting ring

Click For Summary
The discussion centers on the implications of Feynman's equation regarding magnetic flux through a superconducting ring and the application of the gradient theorem. It highlights that the theorem requires the enclosed area to be simply connected, which is not the case here due to the presence of a potential vortex. This leads to the potential not being single-valued, complicating the application of the gradient theorem. The conversation emphasizes that in regions where the potential is not simply connected, the scalar function cannot be treated as such. Ultimately, the potential exhibits a jump across a chosen surface, reflecting the complexities of the magnetic field in this context.
Lagrange fanboy
Messages
9
Reaction score
2
TL;DR
Why isn't the flux 0 since it's equal to a closed line integral of a scalar potential's gradient?
Physics news on Phys.org
Lagrange fanboy said:
In Feymann's seminar on superconductivity, there was this equation (21.28) ##\oint_C \nabla \theta\cdot dl = \frac q \hbar \Phi##. But the gradient theorem demands that ##\oint_C \nabla \theta\cdot dl=0##
The answer to your question is already there in the Feynman lecture you linked to. See the discussion between equations 21.28 and 21.29.
 
PeterDonis said:
The answer to your question is already there in the Feynman lecture you linked to. See the discussion between equations 21.28 and 21.29.
Feymann said that it's the case because the region isn't simply connected, but I don't see how that leads to the gradient theorem breaking down, as it only requires the scalar potential to be differentiable along the path.
 
Lagrange fanboy said:
it only requires the scalar potential to be differentiable along the path.
No, it also requires that, for a closed path enclosing an area, the area must be simply connected. (More precisely, it requires that the closed path be continuously reducible to a point, which is equivalent to the area enclosed by the path being simply connected.) Normally this requirement is not mentioned because normal applications of the theorem are for simply connected regions.
 
Lagrange fanboy said:
I don't see how that leads to the gradient theorem breaking down, as it only requires the scalar potential to be differentiable along the path.
Another way of looking at it is that, if the region covered by the potential is not simply connected, the potential cannot be treated as a "scalar function" in the sense the gradient theorem requires, because it is not single-valued. Indeed, in the Feynman lecture you referenced, the potential ##\Phi## is not single-valued.
 
  • Like
Likes Lagrange fanboy and vanhees71
It's the famous "potential vortex". The corresponding vector field,
$$\vec{V}=\frac{1}{x^2+y^2} \begin{pmatrix}-y \\x \end{pmatrix}$$
is singular along the entire ##z## axis, i.e., its domain is not simply connected, because you can't contract continuously any closed curve that goes around the ##z## axis.

Neverteless except along the ##z## axis you have ##\vec{\nabla} \times \vec{V}=0##.

To define a potential thus you have to choose an arbitrary semi-infinite surface with the ##z## axis as boundary and then calculate the line integral
$$V=\int_{\mathcal{C}} \mathrm{d} \vec{x} \cdot \vec{V},$$
for an arbitrary set of paths all origining from one fixed point ##\vec{x}_0## to any other point ##\vec{x}##, not crossing this surface.

The potential has a jump of ##2 \pi## across the arbitrarily chosen surface, which is the value of the line integral for any closed curve encircling the ##z## axis just once.
 
  • Like
Likes Lagrange fanboy
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...