MHB Mahesh's question via email about Laplace Transforms (2)

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle f\left( t \right)$ satisfies the integral equation

$\displaystyle f\left( t \right) = 7\,t - 3\int_0^t{ f\left( u \right) \,\mathrm{e}^{-3\,\left( t - u \right) } \,\mathrm{d}u } $

Find the solution to the integral equation using Laplace Transforms.

This requires the convolution theorem:

$\displaystyle \int_0^t{f\left( u \right) \,g\left( t- u \right) \,\mathrm{d}u } = F\left( s \right) \,G\left( s \right) $

In this case, $\displaystyle g\left( t - u \right) = \mathrm{e}^{-3\,\left( t - u \right) } \implies g\left( t \right) = \mathrm{e}^{-3\,t } \implies G\left( s \right) = \frac{1}{s + 3}$.

So upon taking the Laplace Transform of the integral equation, we have

$\displaystyle \begin{align*} F\left( s \right) &= \frac{7}{s^2} - 3\,F\left( s \right) \left( \frac{1}{s + 3} \right) \\
F\left( s \right) &= \frac{7}{s^2} - \frac{3\,F\left( s \right) }{s + 3} \\
F\left( s \right) + \frac{3\,F\left( s \right) }{s + 3} &= \frac{7}{s^2} \\
\left( 1 + \frac{3}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
\left( \frac{s + 6}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
F\left( s \right) &= \frac{7 \left( s + 3 \right) }{s^2\,\left( s + 6 \right) } \\
F\left( s\right) &= \frac{7\,s + 21}{s^2\,\left( s + 6 \right) } \end{align*}$

Taking the Inverse Transform will require Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s + 6} &\equiv \frac{7\,s + 21}{s^2\,\left( s + 6 \right) } \\
A\,s\left( s + 6 \right) + B\,\left( s + 6 \right) + C\,s^2 &= 7\,s + 21 \end{align*}$

Let $\displaystyle s = 0 \implies 6\,B = 21 \implies B = \frac{7}{2} $

Let $\displaystyle s = -6 \implies 36\,C = -21 \implies C = -\frac{7}{12} $

Thus $\displaystyle A\,s\left( s + 6 \right) + \frac{7}{2} \left( s + 6 \right) - \frac{7}{12}\,s^2 = 7\,s + 21 $.

Let $\displaystyle s = 1 $

$\displaystyle \begin{align*} 7\,A + \frac{7}{2} \cdot 7 - \frac{7}{12} \cdot 1^2 &= 7\cdot 7 + 21 \\
7\,A + \frac{49}{2} - \frac{7}{12} &= 70 \\
7\,A + \frac{294}{12} - \frac{7}{12} &= \frac{840}{12} \\
7\,A + \frac{287}{12} &= \frac{840}{12} \\
7\,A &= \frac{553}{12} \\
A &= \frac{79}{12} \end{align*}$

$\displaystyle \begin{align*} F\left( s \right) &= \frac{79}{12} \left( \frac{1}{s} \right) + \frac{7}{2} \left( \frac{1}{s^2} \right) - \frac{7}{12} \left( \frac{1}{s + 6} \right) \\
f\left( t \right) &= \frac{79}{12} + \frac{7}{2}\,t - \frac{7}{12} \,\mathrm{e}^{-6\,t} \end{align*}$
 
Mathematics news on Phys.org
This is your work:

This requires the convolution theorem:

$\displaystyle \int_0^t{f\left( u \right) \,g\left( t- u \right) \,\mathrm{d}u } = F\left( s \right) \,G\left( s \right) $

In this case, $\displaystyle g\left( t - u \right) = \mathrm{e}^{-3\,\left( t - u \right) } \implies g\left( t \right) = \mathrm{e}^{-3\,t } \implies G\left( s \right) = \frac{1}{s + 3}$.

So upon taking the Laplace Transform of the integral equation, we have

Edit starts here: (look for the boxes, the first box is an extra 3, all the other boxes are the corrections for removing said 3).

$\displaystyle \begin{align*} F\left( s \right) &= \frac{7}{s^2} - 3\,F\left( s \right) \left( \frac{1}{s + 3} \right) \\
F\left( s \right) &= \frac{7}{s^2} - \frac{\underbrace{\boxed{3}}_{\text{this is the extra 3 I removed from here on out}}\, F\left( s \right) }{s + 3} \\
F\left( s \right) + \frac{F\left( s \right) }{s + 3} &= \frac{7}{s^2} \\
\left( 1 + \frac{\boxed{1}}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
\left( \frac{s +\boxed{4}}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
F\left( s \right) &= \frac{7 \left( s + 3 \right) }{s^2\,\left( s +\boxed{4} \right) } \\
F\left( s\right) &= \frac{7\,s + 21}{s^2\,\left( s +\boxed{4}\right) } \end{align*}$

Taking the Inverse Transform will require Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s + \boxed{4}} &\equiv \frac{7\,s + 21}{s^2\,\left( s + \boxed{4}\right) } \\
A\,s\left( s +\boxed{4}\right) + B\,\left( s + \boxed{4}\right) + C\,s^2 &= 7\,s + 21 \end{align*}$

Let $\displaystyle s = 0 \implies\boxed{4}\,B = 21 \implies B = \frac{21}{\boxed{4}} $

Let $\displaystyle s = -4 \implies\boxed{16}\,C =\boxed{-7} \implies C =\boxed{ -\frac{7}{16}} $

Thus $\displaystyle A\,s\left( s + \boxed{4}\right) +\boxed{-\frac{7}{16}} \left( s + \boxed{4}\right) +\boxed{- \frac{7}{16}}\,s^2 = 7\,s + 21 $.

Let $\displaystyle s = 1 $

I’m going to stop here.
 
  • Like
Likes Greg Bernhardt
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top