Mahesh's question via email about Laplace Transforms (2)

Click For Summary
SUMMARY

The integral equation $\displaystyle f\left( t \right) = 7\,t - 3\int_0^t{ f\left( u \right) \,\mathrm{e}^{-3\,\left( t - u \right) } \,\mathrm{d}u }$ is solved using Laplace Transforms. By applying the convolution theorem, the Laplace Transform of the equation leads to the expression $\displaystyle F\left( s \right) = \frac{7 \left( s + 3 \right) }{s^2\,\left( s + 6 \right) }$. The solution is derived through partial fraction decomposition, resulting in $f\left( t \right) = \frac{79}{12} + \frac{7}{2}\,t - \frac{7}{12} \,\mathrm{e}^{-6\,t}$. This process highlights the importance of correctly applying the convolution theorem and managing algebraic manipulations in Laplace Transform techniques.

PREREQUISITES
  • Understanding of Laplace Transforms and their properties
  • Familiarity with convolution theorem in integral equations
  • Knowledge of partial fraction decomposition techniques
  • Basic calculus and integration skills
NEXT STEPS
  • Study the properties of the Laplace Transform in detail
  • Explore the convolution theorem applications in differential equations
  • Practice partial fraction decomposition with various functions
  • Investigate the use of Laplace Transforms in solving linear differential equations
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who are working with integral equations and Laplace Transforms, as well as educators teaching these concepts.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
$\displaystyle f\left( t \right)$ satisfies the integral equation

$\displaystyle f\left( t \right) = 7\,t - 3\int_0^t{ f\left( u \right) \,\mathrm{e}^{-3\,\left( t - u \right) } \,\mathrm{d}u } $

Find the solution to the integral equation using Laplace Transforms.

This requires the convolution theorem:

$\displaystyle \int_0^t{f\left( u \right) \,g\left( t- u \right) \,\mathrm{d}u } = F\left( s \right) \,G\left( s \right) $

In this case, $\displaystyle g\left( t - u \right) = \mathrm{e}^{-3\,\left( t - u \right) } \implies g\left( t \right) = \mathrm{e}^{-3\,t } \implies G\left( s \right) = \frac{1}{s + 3}$.

So upon taking the Laplace Transform of the integral equation, we have

$\displaystyle \begin{align*} F\left( s \right) &= \frac{7}{s^2} - 3\,F\left( s \right) \left( \frac{1}{s + 3} \right) \\
F\left( s \right) &= \frac{7}{s^2} - \frac{3\,F\left( s \right) }{s + 3} \\
F\left( s \right) + \frac{3\,F\left( s \right) }{s + 3} &= \frac{7}{s^2} \\
\left( 1 + \frac{3}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
\left( \frac{s + 6}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
F\left( s \right) &= \frac{7 \left( s + 3 \right) }{s^2\,\left( s + 6 \right) } \\
F\left( s\right) &= \frac{7\,s + 21}{s^2\,\left( s + 6 \right) } \end{align*}$

Taking the Inverse Transform will require Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s + 6} &\equiv \frac{7\,s + 21}{s^2\,\left( s + 6 \right) } \\
A\,s\left( s + 6 \right) + B\,\left( s + 6 \right) + C\,s^2 &= 7\,s + 21 \end{align*}$

Let $\displaystyle s = 0 \implies 6\,B = 21 \implies B = \frac{7}{2} $

Let $\displaystyle s = -6 \implies 36\,C = -21 \implies C = -\frac{7}{12} $

Thus $\displaystyle A\,s\left( s + 6 \right) + \frac{7}{2} \left( s + 6 \right) - \frac{7}{12}\,s^2 = 7\,s + 21 $.

Let $\displaystyle s = 1 $

$\displaystyle \begin{align*} 7\,A + \frac{7}{2} \cdot 7 - \frac{7}{12} \cdot 1^2 &= 7\cdot 7 + 21 \\
7\,A + \frac{49}{2} - \frac{7}{12} &= 70 \\
7\,A + \frac{294}{12} - \frac{7}{12} &= \frac{840}{12} \\
7\,A + \frac{287}{12} &= \frac{840}{12} \\
7\,A &= \frac{553}{12} \\
A &= \frac{79}{12} \end{align*}$

$\displaystyle \begin{align*} F\left( s \right) &= \frac{79}{12} \left( \frac{1}{s} \right) + \frac{7}{2} \left( \frac{1}{s^2} \right) - \frac{7}{12} \left( \frac{1}{s + 6} \right) \\
f\left( t \right) &= \frac{79}{12} + \frac{7}{2}\,t - \frac{7}{12} \,\mathrm{e}^{-6\,t} \end{align*}$
 
  • Like
Likes   Reactions: benorin
Physics news on Phys.org
This is your work:

This requires the convolution theorem:

$\displaystyle \int_0^t{f\left( u \right) \,g\left( t- u \right) \,\mathrm{d}u } = F\left( s \right) \,G\left( s \right) $

In this case, $\displaystyle g\left( t - u \right) = \mathrm{e}^{-3\,\left( t - u \right) } \implies g\left( t \right) = \mathrm{e}^{-3\,t } \implies G\left( s \right) = \frac{1}{s + 3}$.

So upon taking the Laplace Transform of the integral equation, we have

Edit starts here: (look for the boxes, the first box is an extra 3, all the other boxes are the corrections for removing said 3).

$\displaystyle \begin{align*} F\left( s \right) &= \frac{7}{s^2} - 3\,F\left( s \right) \left( \frac{1}{s + 3} \right) \\
F\left( s \right) &= \frac{7}{s^2} - \frac{\underbrace{\boxed{3}}_{\text{this is the extra 3 I removed from here on out}}\, F\left( s \right) }{s + 3} \\
F\left( s \right) + \frac{F\left( s \right) }{s + 3} &= \frac{7}{s^2} \\
\left( 1 + \frac{\boxed{1}}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
\left( \frac{s +\boxed{4}}{s + 3} \right) F\left( s \right) &= \frac{7}{s^2} \\
F\left( s \right) &= \frac{7 \left( s + 3 \right) }{s^2\,\left( s +\boxed{4} \right) } \\
F\left( s\right) &= \frac{7\,s + 21}{s^2\,\left( s +\boxed{4}\right) } \end{align*}$

Taking the Inverse Transform will require Partial Fractions:

$\displaystyle \begin{align*} \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s + \boxed{4}} &\equiv \frac{7\,s + 21}{s^2\,\left( s + \boxed{4}\right) } \\
A\,s\left( s +\boxed{4}\right) + B\,\left( s + \boxed{4}\right) + C\,s^2 &= 7\,s + 21 \end{align*}$

Let $\displaystyle s = 0 \implies\boxed{4}\,B = 21 \implies B = \frac{21}{\boxed{4}} $

Let $\displaystyle s = -4 \implies\boxed{16}\,C =\boxed{-7} \implies C =\boxed{ -\frac{7}{16}} $

Thus $\displaystyle A\,s\left( s + \boxed{4}\right) +\boxed{-\frac{7}{16}} \left( s + \boxed{4}\right) +\boxed{- \frac{7}{16}}\,s^2 = 7\,s + 21 $.

Let $\displaystyle s = 1 $

I’m going to stop here.
 
  • Like
Likes   Reactions: Greg Bernhardt

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
7K
Replies
2
Views
7K
  • · Replies 1 ·
Replies
1
Views
10K