Is there a way to make sense of the following statement: "[itex]f[/itex] is continuous at a point [itex]x_0[/itex] such that [itex]f(x_0) = \infty[/itex]?" The standard definition of continuity seems to break down here: For any [itex]\epsilon > 0[/itex], there is no way to make [itex]|f(x_0) - f(x)| < \epsilon[/itex], since this is equivalent to making [itex]|\infty - f(x)| < \epsilon[/itex], which cannot happen, since [itex]\infty - y = \infty[/itex] for every [itex]y\in \mathbb R[/itex] and [itex]\infty - \infty[/itex] is undefined. So is there any way to make sense of continuity of an extended real-valued function at a point where it's infinite?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Making sense of continuity at a point where f(x) = Infinity?

**Physics Forums | Science Articles, Homework Help, Discussion**