What Makes Mandlebrot and Julia Sets Fascinating in Fractal Mathematics?

Click For Summary
Fractal mathematics, particularly Mandlebrot and Julia sets, captivates enthusiasts due to their intricate patterns generated by simple algorithms. Users can start exploring fractals by downloading software like Winfract or Fractint, which are compatible with various Windows versions. The discussion highlights the significant advancements in computing power, noting that programs that once took hours to run now complete in seconds. Julia sets are defined by specific complex number sequences, while the Mandlebrot set serves as an index for these Julia sets based on convergence criteria. The fascination with fractals lies in their ability to produce complex visuals from straightforward mathematical principles.
Hyperreality
Messages
201
Reaction score
0
I am sure the same goes for you lot, I am fascinated by the complex patterns of fractals and recently found out it is generated by extremely simple algorithms (which takes weeks to run).

What do I actually need run some algorithms that generates fractals?
 
Mathematics news on Phys.org
Last edited by a moderator:
"Which takes weeks to run"? What vintage computer are you running these things on?

Many years ago, I wrote a program to draw Mandlebrot's set (and the Julia sets). I would start it running and go to class. When I got back about an hour later, it would be almost finished! Now exactly the same program take a few seconds.

Julia sets, Jc, are those starting points (thought of as complex numbers: (x,y)= x+ iy= z), z0, for which the sequence zn+1= zn2+ c converges.
The Mandlebrot set, sort of an "index" to Julia sets, are those c values for which zn+1= zn2+ c, with z0= 0, converges.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K