- #1

- 22

- 0

## Homework Statement

Find the Linear Fractional Transformation that maps the line [tex]Re\left(z\right) = \frac{1}{2}[/tex] to the circle [tex]|w-4i| = 4[/tex].

## Homework Equations

For a transform [tex]L\left(z\right)[/tex],

[tex]T\left(z\right)=\frac{z-z_{1}}{z-z_{3}}\frac{z_{2}-z_{3}}{z_{2}-z_{1}}[/tex]

[tex]S\left(w\right)=\frac{w-w_{1}}{w-w_{3}}\frac{w_{2}-w_{3}}{w_{2}-w_{1}}[/tex]

For [tex]S\left(w\right) = \frac{aw+b}{cw+d}[/tex]

[tex]S^{-1} = \frac{-dw+b}{cz-a}[/tex]

And the final transform is [tex]L\left(z\right) = S^{-1}\left(T\left(z\right)\right)[/tex]

## The Attempt at a Solution

I know how to calculate the transform for any three points to any other three points, so may I just pick any three points on the line and the circle? If not, how do I pick the correct three points?