MHB Marissa043's question on another forum regarding a Cesàro limit

  • Thread starter Thread starter Opalg
  • Start date Start date
  • Tags Tags
    Forum Limit
Click For Summary
If the limit of a sequence \( a_n \) approaches \( p \), then the limit of the average \( (a_1 + a_2 + \ldots + a_n)/n \) also approaches \( p \). The proof involves transforming \( a_n \) to \( a_n - p \) to simplify the case to \( p = 0 \). By applying the epsilon-delta definition of limits, it is shown that for sufficiently large \( n \), the average can be expressed as a sum of two parts: a finite sum and a tail that approaches zero. The finite sum can be made arbitrarily small, leading to the conclusion that the average approaches zero. Thus, the Cesàro limit is confirmed as \( s_n \to p \) as \( n \to \infty \).
Opalg
Gold Member
MHB
Messages
2,778
Reaction score
13
Here is the question:
Prove that if $\displaystyle\lim_{n\to\infty}a_n = p$ then $\displaystyle\lim_{n\to\infty}(a_1+a_2+\ldots +a_n)/n = p$.
Here is a link to the question:

Prove this limit.

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hallo Marissa043!

Replacing $a_n$ by $a_n - p$ (for all $n$), you reduce the problem to the case where $p=0$. Now you have to do some real analysis, with an epsilon.So let $\varepsilon>0$. Since $\lim_{n\to\infty}a_n = 0$, there exists $N$ such that $|a_n|<\varepsilon$ whenever $n>N$. Let $s_n = (a_1+a_2+\ldots +a_n)/n$. The idea of the proof is to look at $s_n$, where $n$ is much larger than $N$, by splitting the sum up into the terms from $1$ to $N$ and then from $N+1$ to $n$. In fact, $$|s_n| = \frac1n\biggl|\sum_{k=1}^na_k\biggr| \leqslant \frac1n\biggl|\sum_{k=1}^Na_k\biggr| + \frac1n\biggl|\sum_{k=N+1}^na_k\biggr| \leqslant \frac1n\biggl|\sum_{k=1}^Na_k\biggr| + \frac{\varepsilon(n-N)}n.$$ By taking $n$ large enough, we can make $\frac1n\Bigl|\sum_{k=1}^Na_k\Bigr|$ less than $\varepsilon$, so that $|s_n| < \varepsilon + \frac{\varepsilon(n-N)}n < 2\varepsilon$. Hence $s_n\to0$ as $n\to\infty$.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 44 ·
2
Replies
44
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K