Mass and Surface Gravity of a Dyson Sphere

Click For Summary

Discussion Overview

The discussion revolves around the mass and surface gravity of a hypothetical Dyson Sphere, exploring theoretical calculations, material requirements, and engineering challenges. Participants engage in mathematical reasoning, conceptual clarification, and speculative considerations regarding the feasibility of constructing such a structure.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant calculates the mass of a Dyson Sphere to be approximately 5x1029 kg and surface gravity about 0.0015 m/s2, based on specific assumptions about radius, thickness, and density.
  • Another participant provides an alternative calculation suggesting a mass of about 1030 kg, indicating a potential discrepancy in assumptions about volume and density.
  • Some participants propose that a real Dyson Sphere would likely not be a solid shell, suggesting it would have significant empty space or be thinner than initially estimated.
  • Concerns are raised about the technological requirements for constructing a Dyson Sphere, including the need for advanced materials and methods for harvesting and transmuting matter.
  • Participants discuss the limitations of available materials in the solar system, noting that the total mass of planets and moons is insufficient for constructing a Dyson Sphere of substantial mass without significant resource acquisition from elsewhere.
  • There is speculation about the feasibility of using lighter materials, such as graphene, to create a Dyson Sphere, but doubts remain regarding the structural integrity and support needed for a habitable inner surface.
  • Some participants reference historical articles discussing the theoretical aspects of building structures around gravity wells, indicating that while not impossible, such constructions are fraught with challenges.

Areas of Agreement / Disagreement

Participants express differing views on the calculations of mass and surface gravity, with no consensus reached on the exact values. There is also disagreement regarding the feasibility of constructing a Dyson Sphere with the materials available in the solar system, as well as the engineering challenges involved.

Contextual Notes

Assumptions about density, thickness, and the nature of the Dyson Sphere's structure vary among participants, leading to different conclusions about mass and surface gravity. The discussion also highlights uncertainties regarding the availability of materials and the technological capabilities required for such a construction.

Drakkith
Mentor
Messages
23,200
Reaction score
7,681
TL;DR
Mass and Surface Gravity of a Dyson Sphere
I'm re-watching Star Trek TNG and I just started the episode where they encounter Scotty aboard a ship that's crashed into a Dyson sphere.
That got me thinking. What would the mass and external surface gravity of a Dyson Sphere be? I've done the math myself, but I'd appreciate someone double checking my numbers.

Assumptions:
Internal Radius of 0.5 AU
Thickness, based on a very, very crude estimate by comparing the Enterprise-D to the sphere: 2 Km
Density of approximately 7 g/cm3 (I don't know what the density of carbon-neutronium is, but I'm using a value a little less than iron's because reasons).

If my calculation is correct, the mass is roughly 5x1029 kg, about 0.25 solar masses, and the surface gravity is about 0.0015 m/s2.
 
Astronomy news on Phys.org
Dude, you have way too much spare time on your hands :smile:
 
  • Like
Likes   Reactions: Vanadium 50
phinds said:
Dude, you have way too much spare time on your hands :smile:
You have no idea. :wink:
 
Hm. I make the shell volume ##4\pi×(75×10^9)^2×2×10^3\mathrm{m}^3##, or ##(9\pi/2)×10^{25}\mathrm{m}^3##. With a density of ##7000\mathrm{kgm^{-3}}## that makes a mass of ##31.5\pi×10^28\mathrm{kg}=10^{30}\mathrm{kg}##, which is 0.5 solar masses.
 
  • Like
Likes   Reactions: Drakkith
Well, glad to know we're within an order of magnitude of each other. Really goes to show the insane amount of material you'd need to build a Dyson Sphere like this.

Of course, I assume the shell of a *real* Dyson Sphere wouldn't be a solid mass, but have significant empty space. Either that or it would be significantly thinner than 2 km. Still, even if it's merely a 10th the amount of material that we've calculated here that still puts it in the realm of literally stellar amounts of material.
 
  • Like
Likes   Reactions: Ibix
Drakkith said:
Of course, I assume the shell of a *real* Dyson Sphere wouldn't be a solid mass, but have significant empty space. Either that or it would be significantly thinner than 2 km. Still, even if it's merely a 10th the amount of material that we've calculated here that still puts it in the realm of literally stellar amounts of material.
That's not the only problem with this kind of DS. It requires a lot of magical technology (handwavium with sufficient mechanical strength, harvesting matter from the star or import from other star system, artificial gravity for the habitable inner surface and so on). A real Dyson Sphere would need to be build completely different (especially no rigid shell and nobody living inside) and even a 10th of the area density would be way too much.
 
  • Like
Likes   Reactions: Drakkith
Drakkith said:
...
Thickness, based on a very, very crude estimate by comparing the Enterprise-D to the sphere: 2 Km
Density of approximately 7 g/cm3 (I don't know what the density of carbon-neutronium is, but I'm using a value a little less than iron's because reasons).

If my calculation is correct, the mass is roughly 5x1029 kg, about 0.25 solar masses, and the surface gravity is about 0.0015 m/s2.

Metal coated graphene or metalized plastic can be inflated with helium or hydrogen. That can lower your estimate by more than 4 orders of magnitude. Could be made to look like the sets in scifi. I find it unlikely that Hollywood hires the welders who make battleship armor. I suspect we are seeing pictures of painted plastic or CGI based on earlier sets made out of plastic.

Drakkith said:
...Really goes to show the insane amount of material you'd need to build a Dyson Sphere like this...

...Still, even if it's merely a 10th the amount of material that we've calculated here that still puts it in the realm of literally stellar amounts of material.
That limits us to building at most a few hundred billion of them in the Milky Way.
 
  • Like
Likes   Reactions: Drakkith
stefan r said:
That limits us to building at most a few hundred billion of them in the Milky Way.
The problem is not the available material in the Milky Way but in a single planetary system. In case of the solar system all plantes and moons together have only 0.13 % of the mass of Sun and only about 5 % of that mass is solid. That means without transmutation the maximum mass of a Dyson Sphere would be 0.007 % of the mass of Sun (assuming that all metals can be used). Even with transmutation of H and He from the gas giants to heavier elements, the mass limit would still be two orders of magnitide below a 10th of the mass of the Sun.

Building havier Dyson Spheres would require large-scale gas mining and transmutation of matter from the star or (even worse) hauling matter between stars. Maybe there is a possibility to get the requires materials during the accretion phase of a protostar. But that would imply a lot of other problems (e.g. the strong variations of the luminosity during the transition of the protostar to a main sequence star).
 
DrStupid said:
The problem is not the available material in the Milky Way but in a single planetary system. In case of the solar system all plantes and moons together have only 0.13 % of the mass of Sun and only about 5 % of that mass is solid. That means without transmutation the maximum mass of a Dyson Sphere would be 0.007 % of the mass of Sun (assuming that all metals can be used). Even with transmutation of H and He from the gas giants to heavier elements, the mass limit would still be two orders of magnitide below a 10th of the mass of the Sun.

Building havier Dyson Spheres would require large-scale gas mining and transmutation of matter from the star or (even worse) hauling matter between stars. Maybe there is a possibility to get the requires materials during the accretion phase of a protostar. But that would imply a lot of other problems (e.g. the strong variations of the luminosity during the transition of the protostar to a main sequence star).

2.8 x 1023 m2 for a sphere with Earth orbital distance.

Graphene has 7.6 x 10-7 kg/m2 specific density. So we need something like 2.1 x 1017 kg of carbon per atomic layer. The asteroid belt has estimated 2.3 x 1021 kg of material. Meteors recovered on Earth have 1.5% carbon content. Asteroids are likely to average much higher carbon content. We have enough material in the belt to do a hundred layers of graphene foam. Add few atoms thick layer of metallic coating. We would need to weigh this down so that it did not get blow away by solar light pressure. That could be done by inflating the foam with gas giving it that bulky Star Trek look.

Neptune has 10^26 kg. Several hundred kg/m2 would be more like the concrete decks we build in cities. There may not be enough calcium in Neptune for a thick concrete deck. Concrete could not support itself and needs some sort of "active support structure". There is enough material to do wood floorboard, tortoise shell/bone, a variety of thick polymers, or sheet metal steel. All of those would require active support too.

Building with active support has not been demonstrated yet. Paul Birch wrote some articles for Journal of the British Interplanetary Society. He gets into making spheres around gravity wells in section 3.4 of the third article published in 1983. The shell mass can be made arbitrarily thick so long as the rotor mass or rotor velocity is able to be increased by the same amount. Not "impossible" just "prone to catastrophic failure".
 
  • #10
stefan r said:
2.8 x 1023 m2 for a sphere with Earth orbital distance.

Graphene has 7.6 x 10-7 kg/m2 specific density. So we need something like 2.1 x 1017 kg of carbon per atomic layer. [...]
Yes, bulding a light-weight Dyson Sphere (down to a minimum of 1.3 g/m² for a closed Dyson Bubble with 100% absorption) is not limited by the available material. But there are not enough resources for a rigid Dyson Shell (not to speak of the required tensile strength).

stefan r said:
We would need to weigh this down so that it did not get blow away by solar light pressure. That could be done by inflating the foam with gas giving it that bulky Star Trek look.
Looking bulky is not sufficient. We are talking about a DS with a habitable inner surface:
Sar Trek Dyson Sphere.jpg
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
15
Views
3K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
8K
  • · Replies 14 ·
Replies
14
Views
5K
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
5K