Graduate Massless Particle Action under Conformal Killing Vector Transformation

Click For Summary
SUMMARY

The discussion centers on the action of a massless particle under conformal Killing vector transformations, specifically using the action defined as S[x,e] = (1/2) ∫ dλ e-1 dot{x}μ dot{x}ν gμν(x). The transformation xμ → xμ + αξμ leads to a change in the action, which is analyzed to determine its invariance. The participants conclude that the term involving the integral vanishes for massless particles due to the properties of the conformal Killing vector and the nature of the massless action. The discussion emphasizes the importance of integrating by parts and the implications of the equations of motion for the einbein.

PREREQUISITES
  • Understanding of massless particle dynamics
  • Familiarity with conformal Killing vectors
  • Knowledge of variational principles in physics
  • Proficiency in LaTeX for mathematical expressions
NEXT STEPS
  • Study the properties of conformal Killing vectors in differential geometry
  • Explore the implications of the einbein formalism in particle dynamics
  • Learn about the parametrization independent formulation of the action for massive particles
  • Investigate the relationship between conformal transformations and symmetries in physics
USEFUL FOR

The discussion is beneficial for theoretical physicists, particularly those focusing on particle dynamics, general relativity, and differential geometry. It is also valuable for students and researchers interested in the mathematical foundations of physics and the application of variational principles.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
For a massless particle let\begin{align*}
S[x,e] = \dfrac{1}{2} \int d\lambda e^{-1} \dot{x}^{\mu} \dot{x}^{\nu} g_{\mu \nu}(x)
\end{align*}Let ##\xi## be a conformal Killing vector of ##ds^2##, then under a transformation ##x^{\mu} \rightarrow x^{\mu} + \alpha \xi^{\mu}## and ##e \rightarrow e + \dfrac{1}{4} \alpha e g^{\mu \nu} (L_{\xi} g)_{\mu \nu}## the action changes (to first order in ##\alpha##) as\begin{align*}
S[x,e] &\rightarrow \dfrac{1}{2} \int d\lambda e^{-1} \left(1- \dfrac{1}{4} \alpha g^{\rho \sigma} (L_{\xi} g)_{\rho \sigma} \right)(\dot{x}^{\mu} + \alpha \dot{\xi}^{\mu})(\dot{x}^{\nu} + \alpha \dot{\xi}^{\nu}) g_{\mu \nu}(x) \\ \\

&= S[x,e] + \dfrac{1}{2} \int d\lambda e^{-1} \left( \alpha [\dot{x}^{\mu} \dot{\xi}^{\nu} + \dot{x}^{\nu} \dot{\xi}^{\mu}] - \dfrac{1}{4}\alpha g^{\rho \sigma} (L_{\xi} g)_{\rho \sigma} \dot{x}^{\mu} \dot{x}^{\nu} \right) g_{\mu \nu}(x)
\end{align*}Since ##\xi## is a conformal Killing vector it satisfies ##(L_{\xi} g)_{\mu \nu} = \Omega^2 g_{\mu \nu}## therefore ##\dfrac{1}{4} g^{\rho \sigma} (L_{\xi} g)_{\rho \sigma} = \dfrac{1}{4} \Omega^2 {\delta^{\rho}}_{\rho} = \Omega^2## so\begin{align*}

S[x,e] \rightarrow S[x,e] + \dfrac{1}{2} \int d\lambda e^{-1} \alpha \left( [\dot{x}^{\mu} \dot{\xi}^{\nu} + \dot{x}^{\nu} \dot{\xi}^{\mu}] - \Omega^2 \dot{x}^{\mu} \dot{x}^{\nu} \right)

\end{align*}This transformation should leave ##S## invariant, so how does one show that the remaining integral vanishes? Is it a case of integrating by parts and neglecting a boundary term, in which case, which one?
 
Physics news on Phys.org
You seem to have dropped a ##g_{\mu\nu}## from your last expression. Putting it back in, the last term becomes ##\Omega^2\dot x^\mu\dot x^\nu g_{\mu\nu}## which is zero for a massless particle.

The term in square brackets becomes ##2\dot x_\mu\dot\xi^\mu##. Noting that ##\frac d{d\lambda}(\dot x_\mu\xi^\mu)=\dot x_\mu\dot\xi^\mu+\ddot x_\mu\xi^\mu## and that ##\dot x_\mu\xi^\mu=\mathrm{const}## it reduces to ##-2\ddot x_\mu\xi^\mu##, although I'm not sure that helps.
 
  • Like
Likes ergospherical
Ibix said:
You seem to have dropped a ##g_{\mu\nu}## from your last expression. Putting it back in, the last term becomes ##\Omega^2\dot x^\mu\dot x^\nu g_{\mu\nu}## which is zero for a massless particle.

One thing I don't understand is that if ##\dot{x}^\mu\dot x^\nu g_{\mu\nu}=0## then the integrand of ##S[x,e]## is also identically zero hence also ##S[x,e]##, which seems wrong. Maybe you are supposed to treat it as the action of a massive particle then at the end take ##m \rightarrow 0##?
 
Last edited:
Yeah, you're right. Never mind.

But ##\frac 12\int d\lambda e^{-1}\alpha\Omega^2\dot x^\mu\dot x^\nu g_{\mu\nu}## would appear to be ##\alpha\Omega^2S[x,e]##. Is that useful?
 
  • Like
Likes ergospherical
I don't know haha, not sure what to do with ##\dot{x}^{\mu} \dot{\xi}^{\nu} + \dot{x}^{\nu} \dot{\xi}^{\mu}##
 
Isn't the upshot of this idea to finally end up with the parametrization independent formulation of the action functional for massive particles (i.e., time-like geodesics)
$$S=-\int \mathrm{d} \lambda \sqrt{g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}}?$$
 
vanhees71 said:
Isn't the upshot of this idea to finally end up with the parametrization independent formulation of the action functional for massive particles (i.e., time-like geodesics)
$$S=-\int \mathrm{d} \lambda \sqrt{g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}}?$$
Yes, by using the algebraic equation of motion of the einbein. But here TS asks about the explicit invariance of the world line action under general coordinate transformations (target space) in the guise of conformal transformations. I'd say you need to use the equations of motion for e; how else would the particle know it's massless and exhibits conformal symmetry?
 
  • Like
Likes vanhees71
@Alexandru123 please use the LaTeX Guide (there's a link to it at the bottom left of the post window) to get the correct LaTeX code for formatting math.
 
  • Like
Likes Alexandru123
Make ##d\xi/d\lambda = (d\xi^{\mu}/dx^{\mu})*dx^{\mu}/d\lambda##. Which will allow you to put the 2 ##\dot{x}## in evidence. ( this is the chain rule with ##x^{\mu}## until I find out to write out formulas in latex here)
Then you'll get ##2* \nabla \cdot \xi - \Omega^2## in the integrand.
There is one last theorem where ##(1/2) \nabla \cdot \xi = \Omega^2## by tracing ##L_{\xi} g= \Omega^2 g##. However here is where I get stuck.
 
Last edited:
  • #10
@Alexandru123 if you are trying to write a divergence in LaTeX, i.e., ##\nabla \cdot \xi##, use "\nabla \cdot" as the operator.
 
  • Like
Likes Alexandru123

Similar threads

  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
398
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
910
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K