Mastering physics homework: Mass oscillating on a vertical spring

  • Thread starter Thread starter BadAtPhysic
  • Start date Start date
AI Thread Summary
The discussion focuses on solving a physics problem involving a mass oscillating on a vertical spring. The user attempted to calculate the spring constant using the equation ((.29)(9.8))/(.14), but this was deemed incorrect and not credible. Participants emphasized the importance of showing a genuine effort in problem-solving according to the forum's guidelines. They encouraged the user to clarify the relationships between the mass's positions and the equilibrium state to better understand the problem. The conversation highlights the need for proper formulation and understanding of physics concepts in homework help.
BadAtPhysic
Messages
1
Reaction score
0
Homework Statement
A 50- cm -long spring is suspended from the ceiling. A 290 g mass is connected to the end and held at rest with the spring unstretched. The mass is released and falls, stretching the spring by 14 cm before coming to rest at its lowest point. It then continues to oscillate vertically.
Part A
What is the spring constant?
Express your answer with the appropriate units.
Relevant Equations
N/A
I tried 20.31 and I got it wrong. The equation I attempted was ((.29)(9.8))/(.14). Can someone explain how to do this problem?
 
Physics news on Phys.org
  • Like
Likes erobz and berkeman
BadAtPhysic said:
Homework Statement: A 50- cm -long spring is suspended from the ceiling. A 290 g mass is connected to the end and held at rest with the spring unstretched. The mass is released and falls, stretching the spring by 14 cm before coming to rest at its lowest point. It then continues to oscillate vertically.
Part A
What is the spring constant?
Express your answer with the appropriate units.
Relevant Equations: N/A

I tried 20.31 and I got it wrong. The equation I attempted was ((.29)(9.8))/(.14). Can someone explain how to do this problem?
Consider three positions of the mass: where it was released from, where it reached at its lowest point and the equilibrium position. What is the relationship? Which does your "equation" represent?
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Back
Top