Hi, I need to find this integral:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

G(f)=-A\int_{\frac{-3T}{2}}^{\frac{-T}{2}}e^{-j2\pi ft}dt+A\int_{\frac{-T}{2}}^{\frac{T}{2}}e^{-j2\pi ft}dt-A\int_{\frac{T}{2}}^{\frac{3T}{2}}e^{-j2\pi ft}dt

[/tex]

Here's the working out I did:

[tex]

G(f)=-A[\frac{e^{j\pi fT}-e^{j\pi f3T}}{-j2\pi f}]+\frac{A}{\pi f}[\frac{e^{j\pi fT}-e^{-j\pi fT}}{2j}]-A[\frac{e^{-j\pi f3T}-e^{-j\pi fT}}{-j2\pi f}]

[/tex]

Therefore:

[tex]

G(f)=2TAsinc(fT) -3TAsinc(3fT)

[/tex]

But when I used Mathematica I typed this:

Integrate[-A*Exp[-I*2*\[Pi]*f*t], {t, -T/2, (-3*T)/2}] +

Integrate[A*Exp[-I*2*\[Pi]*f*t], {t, -T/2, T/2}] +

Integrate[-A*Exp[-I*2*\[Pi]*f*t], {t, T/2, (3*T)/2}]

and it gave me this:

[tex]\frac{ASin(f\pi T)}{f\pi}-\frac{Ae^{-2j\pi ft}Sin(f\pi T)}{f\pi}+\frac{Ae^{2j\pi ft}Sin(f\pi t)}{f\pi}[/tex]

which equals:

ATsinc(fT) + 2jATsinc(πFT)Sin(2πfT)

Is the answer from Mathematica the correct one?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Mathematica Integration Question

**Physics Forums | Science Articles, Homework Help, Discussion**